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Internal vibrations of a vector soliton in the coupled nonlinear Schralinger equations
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Static and dynamic properties of a two-component soliton are studied via the variational approximation
(VA), consideration of the radiation spectrum, and direct numerical simulations. The VA, based on a Gaussian
Ansatz proves to bdas compared to the direct simulatipriairly accurate in some respects and inaccurate in
others—in particular, the predictions for the widths of the stationary states are about a sixth part greater than
the actual widths. We formulate an empirically modified version of the variational approximation: at the end of
the analysis, the Gaussian is replaced by sech with properly rescaled widths. This hybrid VA yields extremely
accurate predictions for the stationary states. The error in the width predictisri%, and simulations
demonstrate minuscule radiation losses. The VA model predicts three eigenmodes of the soliton’s internal
vibrations, all of which are observed numerically. Oscillation of the separation between the two components is
found to be the most persistent mode, and in-phase oscillation of the two widths is the next most persistent one;
in contrast, the out-of-phase width oscillations are unstable, quickly rearranging themselves into the stable
in-phase mode. These features are easily explained by comparing the corresponding vibrational eigenfrequen-
cies to the spectral gaps which isolate oscillations localized at the soliton from delocalized radiation modes. For
vector solitons with energy nearly equally divided between the components, the analysis reveals a remarkable
feature:saturationof the separation oscillations, with the radiative decay virtually ceasing at a finite level of
the mode’s amplitude. The relatively stable in-phase width-oscillation mode decays indefinitely, but according
to a very slow power law rather than exponentially. Lastly, for large-amplitude vibrations, the VA models
predict dynamical chaos, but, due to the quick decay of the large oscillations, direct simulations show no chaos.
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PACS numbes): 42.81.Dp, 42.65.Re, 03.40.Kf

I. INTRODUCTION quite useful. In this work, we employ the variational approxi-
mation (VA) based on the averaged Lagrangjidh supple-
Despite great progress in characterizing solitons in a widénented by direct consideration of eigenfrequencies of the
variety of situations, one of the most fundamental cases, vedector soliton’s internal modes with respect to the spectrum

tor solitons governed by a pair of coupled nonlinear $chro©f the linearized equationsvhich will turn out to comple-

dinger (NLS) equations, defies solution in some importantment the VA in a very helpful way The VA approximates a

respects. The coupled NLS model and its vector soliton so§0|It0n by anAnsatzhaving a few free parameters, with the

- . : ; .. ~~soliton’s known qualitative features built in, and flexible
lutions have a number of interesting physical applications

h oy tant of which is a bimodal optical fib h enough to accommodate as yet unknown features. Alrire
€ mostimportant ot which 1S a bimodal optical TIber, Whereqa.7iq" o pstituted into the Lagrangian density of the govern-

the coupled NLS equations govern light propagation in thnq nartial differential equation€PDES, which is then ex-
two polarization componentd]. Except for the special case pjicitly integrated over the temporal variable, leaving a

of the Manakov systerf2], with equal self-phase and cross- dependence only on the propagation distafweich is the
phase modulation coefficientavhich is not the case in the eyolutional variable for the optical fibers or waveguiflep.
real bimodal fibey, when the coupled NLS equations are The Euler-Lagrange equations following from this averaged
integrable, exact analytical results, such as expressions femagrangian are a set of ordinary differential equations
stationary solitons with arbitrary polarization, or a rigorous (ODES for the Ansat’s parameters, approximating the sys-
knowledge of how quickly internal vibrations of a perturbed tem’s dynamics.
vector soliton fade through emission of radiation, are absent In the integrable limits of the coupled NLS equations, the
(though, an important contribution to the latter issue wasvector solitons take a hyperbolic secdsech shape[2,5].
recently made by Yangg3]). Although this does not hold true for the genefabninte-
The coupled NLS equations can be well simulated bygrable case, it is not unreasonable to expect sech profiles to
contemporary numerical techniques. Nevertheless, in the albe good approximations. For example, the variational
sence of nontrivial exact solutions, approximate analytiomethod with the sech approximation was used to model vec-
methods remain(in conjunction with direct simulations tor solitons in a pair of coupled NLS equations in Ref.
and[7]. The disadvantage of this is that, in order to make the
integrals in the VA analytically soluble, the pulse widths in
*Electronic address: malomed@eng.tau.ac.il the two polarization components must be postulated to be
"Electronic address: tasgal@math.tau.ac.il identical, whereas, in reality, the pulse widths of the two
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components are often far from equal. In the physically mosbscillation and in-phase width-oscillation modes, as well as
important case of the linear ellipticity, for example, the the instability of the out-of-phase one, by comparing the
widths may differ by one-sixtf8]. A well-known alternative  eigenfrequencies of these modes with the gaps that insulate
is a GaussiarmAnsatz[4]. This is in some respects a less the small oscillation modes localized at the soliton from the
accurate approximation for the soliton shape, but can accontontinuum spectrum of the delocalized radiation modes. We
modate important featurdsuch as the unequal widthshat  find that the most robust oscillation modthe separation
the sechAnsatzcannot[4,8—-11. between the centerss located inside the gap; the second
In this work, we formulate an empirically improved ver- most robust modéhe in-phase width oscillationss almost
sion of the VA, combining elements of both the Gaussiarexactly at the gap’s edge; and the unstable mgde out-of-
and sech-based models. The calculations are based onphase width oscillationdies outside the gap, well inside the
Gaussiamnsatz with anad hocmaodification of the results continuum spectrum. This means that the out-of-phase width
to the sech shapa&t the endof the analysis. We compare the oscillation is not a true eigenmode of the full linearized prob-
predictions of the usual Gaussian-based VA and of the newllem, but rather a so-called quasimo@d. a known quasi-
proposed hybrid model with direct numerical simulation of mode of the two-component optical soliton in the second-
the PDEs, focusing especially on the predictions which théharmonic-generating mediupi2)).
Gaussian VA makes but which the sech model cannot. When the energy of the steady state is evenly divided
The results show that the usual Gaussian VA is generall{petween the polarization components, the predictions for the
accurate, save for the numerically observed relaxation of tha-phase vibrational mode given by the VA prote@n com-
vector solitons from their predicted Gaussian shapes to thparison with direct simulationto be fairly good. But in the
final sechlike ones. This proviso is not insignificant, as, incase of a more general polarization, when one component
the course of the relaxation, the pulse’s full width at halfhas more energy than the other, the more energetic compo-
maximum (FWHM) drops by about one-sixth before reach- nent tends to oscillate as if by itself, with the less-energetic
ing equilibrium, and this readjustment process occludes othasne following along but notcontrary to the VA predictions
more subtle effects. In contrast, our hybfilit essentially contributing in an equal fashion to the oscillations.
Gaussiah VA yields excellent predictions for the static so-  An issue of special interest is the possibility of chaotic
lutions, especially for the vector soliton’s widths, which areinternal vibrations of the solitofsee, for example, the recent
at worst only about 1% greater than the exact numerical rework [13] where this issue was considered in the framework
sult, and are usually much better than that. Another strengtbf the Zakharov modgl We find that the ODE description
of the hybrid VA is related to the radiative losses: while theproduced by the VA does exhibit dynamical chaos, provided
configurations produced by the usual Gaussian approximahat the amplitude of the vibrations is large enoubht still
tion lead, in direct simulations, to about 99% of the energyunder the threshold for escape or complete radiative decay,
trapped into the vector soliton and 1% being lost to disperi.e., splitting of the vector soliton into two single-component
sive radiation, the hybrid VA ends up with virtually all the solitons, or unlimited growth of the widths3]). However,
energy remaining in the solitorfnumerical simulations direct PDE simulations demonstrate that the above-
showed no detectable emitted radiajiofhe latter feature is mentioned instability quickly switches off the out-of-phase
a significant asset of this version of the VA, since variationalmode, and the loss of this degree of freedom, together with
methods cannot easily accommodate and therefore typicalljnonradiative damping of large-amplitude oscillations in the
omit the radiation component of the soluti¢see Ref[11] other modes, causes the degeneration of would-be chaotic
for a rare exception Thus anAnsatzwhich, on comparison oscillations into regular ones.
with numerical simulation, gives rise {@irtually) no emis- Yang[3] very recently studied the vibrations of and emis-
sion of radiation has a crucial advantage. sion of radiation from the vector solitons via a different
The second objective of this work is an accurate quantimethod. Based on a straightforward linearization of the equa-
tative analysis of internal vibrations of the vector soliton bytions about the static solution, Yang found exact small vibra-
means of both the VA and direct simulations. This problemtional solutions in a few special cases, and elaborated algo-
is important for solitons in optical fibers, especially narrow rithms for determining the true form of the small vibrations
solitons with widths of few picoseconds or less, for whichnumerically in the general case. Referefi8é represents a
the soliton period is short enough-1 km) to allow direct great advance in understanding the dynamics of small vibra-
experimental observation of the soliton’s internal dynamicstions of the vector solitons. The very sophistication of the
The VA predicts three small vibrational eigenmoded methodology, however, makes the general results cumber-
about the soliton’s steady state. Direct PDE simulations demsome to obtain and work with, and obscures some important
onstrate that the most persistent of the predicted modes iesults under a mass of analytic and numerical apparatus.
oscillation of the separation between the centers of the tw@ur methodology provides a well-motivated and heuristic
polarization components. After that, the next most persisterdlescription of the essential phenomena, leading to fairly ac-
mode is the one in which the widths of the two componentscurate predictions, as compared to the direct simulations.
oscillate in phase. The third mode, out-of-phase width oscil-The flexibility and relative technical simplicity of the com-
lations, turns out to be conspicuously unstable. The instabilbined technique developed in the present work greatly assists
ity, however, is not with respect to the emission of radiation,analysis of the numerical observations; thus we confirm
but rather with respect to the in-phase width oscillations: asome of the results of Reff3] for small oscillations, finding
vector soliton initially vibrating out of phase tends to quickly disagreements in some other cases, and we obtain interesting
rearrange itself into the one with stable in-phase width oscilresults fornonsmalloscillations, which are for the most part
lations. We can explain the robustness of the separatiorbeyond the scope of Rf3]. In particular, we conclude that
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the amplitude of the relatively stable in-phase width-amplitudes A,,A,), widths (\W,,W,), and central positions
oscillation mode decays indefinitely according to a power(y,,y,). Each component can also have any phasgd,,),
law, while the decay of the most stable separation modeentral frequencyly,,b,), and frequency chirpg,c,). Not
saturatesleaving a virtually constant finite residual value of allowed by theAnsatzare the emission of dispersive radia-
its amplitude. The latter result, predicting finite-amplitudetion or more complicated changes in the vector soliton’s
persistent relative oscillations of the two components of theshape. Notice, however, that th@satzdoes admit splitting
vector soliton, has clearly important physical consequencesf the vector soliton into single-component o8
for optical fibers. It should be easy to observe experimentally The averaged Lagrangian variational method, witisatz
by means of polarization filters and the usual autocorrelatiori2) and governing equatiori4), yields a set of equations for
technique[1] in a bimodal optical fiber. Taking a moderately all the twelve parameters of tinsatZ8]. They include four
narrow soliton with temporal width of few picoseconds, aintegrals of motion and six nontrivial evolutional equations
fiber length of several kilometers will be sufficient. The ini- (which we write below as three second-order equajions
tial perturbation exciting the separation mode can be genefFhere are also equations for two variables, the phasesd
ated by a short additional fiber segment with a strong groupa, , which involve other variables but do not themselves in-
velocity birefringence. fluence anything else, so are not displayed below. The inte-
grals of motion are the energi&, , in the components
Il. GAUSSIAN APPROXIMATIONS—USUAL AND

HYBRID EUEJ |lul2dt=7A2W,, (33
A. Basic equations -

The basic governing equations for the light propagation in %
a bimodal nonlinear optical fiber are the well-known coupled E,= j_m|v|2dt: VaAZW, , (3b)
NLS equationg1]

the total momentunf,

iu,+ 3Uq+ (Ju[?+Blv[?)u=0, (1a .
PEJ = (uU* —uuf +v* —vof)dt
iv,+ 3ve+ (Blul2+|v]?)v=0. (1b) o
d
The variablesu(z,t) andv(z,t) are the amplitudes of the = d_z(E“y“+ E,y,)=—(E,b,+E,b,), (30

electromagnetic waves in each of the polarization modiss,

the propagation distance, amds the reduced timgin the 44 the Hamiltonian of Eqg1), which we will not need in
reference frame moving along with the carrier wadgqua- g explicit form. It is convenient to define the soliton’s po-
tions (1) omit some terms which are in the present 9°”t9XtIarization angled [8] by tar? ¢=E, /E,, which allows us to
inconsequential—the phase-velocity and group-velocity birey, riia E,=(E,+E,)co2 6 and E,=(E,+E,)sir? 6. If the
fringence, and four-wave mixing. These terms are omitted,;qihs were equal—which is not generally the case—then
not because they are small, but rather becaeseept for o ampjitudes of the componentsandv would be propor-
some special cases—see, for example, Ref]) they either - respectively, to cog and siné.

can be eliminated by simple transformations, or have nearly The remaining nontrivial equations of motion for the

zero nﬁ.t effecli dulf tr? self—avgraglg|ng. lati d ¢ widths W, , and relative positiory=y,—y, of the vector
In this work, all the numerical simulations are done Orgoliton’s components are

the linear birefringence case—the most important one for th

optical fibers—which has the nonlinear cross-coupling coef- o2 E 2B
ficient in Egs.(1) B=2 [1]. The analytic part of the study, —W,=W, - ——WwW, %~ — E,W,(W2+W?)~372
however, will be kept general, valid for any positive value of dz N2 J
B. 2 2
As an approximation for the vector soliton generated by x| 1— exr{ __J , (4a)
the coupled NLS equatiord), we choose the Gaussidm- Wi+ W, Wi+ W,
satz
d? E 2B
1 (t-y\? W, =W, = =W 2~ —E, W, (Wi+ W)~ 32
u(z,t)y=A,exp — > ( Wy”) exdi(a,+by(t—y,) dz v 27 N uWo(Wy
L u J
2y° y?
+ey(t—yyd], (2a) X 1- = -
(Z=Aexg - - (t_y”)z_ i(a,+by(t-y,)
v(z,t)=A,exp — 5 exdi(a,+b,(t—y, d2 d 2B
L2V Wo ] G2V DD = BB W W
+c,(t=y,) )], (2b) w
2
where all the parameters are functions of the_ propa_lgation xexp{ - ﬁ 7 (40)
distancez. Ansatz(2) accommodates a pulse with arbitrary ut W,
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while the chirp parameters, and c, are expressed in terms of the widths as follows=(2W,) "1(d/d2W, andc,
=(2W,) " 1(d/d2)W,.

B. Fixed points
The fixed points of Eqs4) correspond to steady-state vector solitons, with the stationary valaeg=c,=0 and[8]

N3 312 2r \3
= p— 4 _ 2
W, 3 1-Br| 7 1-B r2+1) : (53
V2 2\ 2r \3
_ _pe-1 _R2
W, E 1-Br Y oy 1-B% ] |. (5b)

where the width ratie =W, /W, is determined by the equa- Gaussian-sechAnsatz[Egs. (6b) and (6c)] with E=2. Note
tion that the negativeness of the Hamiltonian is a necessary sta-
bility condition for the soliton(if the Hamiltonian were posi-

2 \%2 . B E, tive, the soliton would decay into radiatipriThe stationary
B 1+r2 " E, + E_ur —-1=0. (309 widths for other values of the energies can be obtained from

Table I: in eitherAnsatz the widths scale as the reciprocal of

Thus, the energies of the two componeBtsandE, are free the total energy, so, to obtain the widths for arbitrary total

parameters of the stationary vector soliton, the amplitéges ©€nergyE, the values borrowed from Table | should be mul-

andA, being determined by the energies and the widf)s tiplied by (yV2m/E) or (2f), for the Gaussian or sech ap-

according to the relationshig8a) and (3b). proximations, respectively. For polarization angles greater
While the relative frequencyb{,—b,) is zero at the fixed than 45°, one should take the complement of the angle and

point, the mean frequency(+b,)/2 can take any constant interchangeu andv.

value, a nonzero one adding a net momentum to the soliton.

The phases,, anda, vary linearly withz at the fixed points, C. Madification of the Gaussian approximation

which, however, does not affect the other parameters of the

Ansatz Fmally,.all this is mserted back intAnsatz(2) to by the Gaussiamnsatzs fixed points differ from the exact
produce apredicted vector soliton wave form. shapes in a simple way which suggests a transformation to
Table | summarizes the predictions produced by the VA P P y 99

for the parameters of the stationary vector soliton for the mProve the predictions of the Gaussian-based VA in the

physically most important valuB=2 and a range of polar- general case. The available exact solutigims the cases

ization angles. The Hamiltonians in the table are of the usu lFZO’ B=1, or arbitraryB with u(z,t)=uv(z,t)] for the soli-

Fon with given energy take a sech forrf2,5], |u|
Gaussian modeg(2), while the values of the widths refer to | secn ech . ) ; ~
either the Gaussiaknsatz[Egs. (2)] with total energyE = AssechWe=c), with the width and amplitude related to

—E,+E, = 27, or (see below for a descriptipthe hybrid those of the Gaussiainsatz(2), in all the cases, as follows:
Wseeh \/mWGaus? Aseche \/WEAGaUS-? (63)

In the exactly solvable cases, the vector solitons predicted

TABLE I. The widths of the two components predicted for the
stationary vector soliton by the variational approximation, based o
the Gaussiamnsatzwith total energyE= 2, or the sechAnsatz
with total energyE=2, for a range of values of the vector soliton’s
polarization anglé. The values of the vector soliton’s Hamiltonian
refzer to the GaussiaAnsatz The cross-coupling coefficient B

=3.

'Note that these relations have the seaisatis energy,E
=2(AseN2Weeeh equal to the Gaussiahnsatss energy. The
other parameters, except for thenimportan} phases, are the
same as in the Gaussian approximation.

This suggests that making the same adjustment ifitlaé
results produced by the Gaussian-based VA—replacing the

Polarization Hamiltonian W, W, Gaussian by a sech pulse with the parameters rescaled ac-
cording to Egs(6a—may in effect cancel some of the dis-
6=0° —0.500 1.0000 n/a tortions caused by thAnsat’s artificially forcing the pulse
6=5° —0.495 1.0038 1.1881 to take a Gaussian shape, even in the cases when exact so-
0=10° —0.481 1.0149 1.1930 lutions are not available.
0=15° —0.460 1.0330 1.2003 To estimate the importance of the adjustment, we note
0=20° —-0.435 1.0571 1.2089 that if, in the soluble cases, all the energy of the Gaussian
0=25° —0.408 1.0860 1.2168 initial pulse were to go into the final sech pulse, (tsan-
#=130° —0.384 1.1175 1.2220 dardly defined FWHM width would end up a factor
6=235° —0.364 1.1489 1.2220 [(v2 cosh *v2)/\/xr In 2]~0.845 smaller than at the start.
0=40° —0.352 1.1774 1.2150 For the exact soliton, this adjustment yields the exact so-
0=45° —0.347 1.2000 1.2000 lution; therefore this adjustmemixactlycancelsall the dis-

tortions. There is no reason in the general case for the can-
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TABLE II. The modal eigenvectors and the corresponding eigenfrequencies for the small internal vibra-
tions of the vector soliton, as predicted by the variational approximation based on the Ga&rssasawith
total energyE= 27, at different values of the polarization angle

Polarization Separation In-phase mode Out-of-phase mode
6=0° k(1,0,0)=n/a k(0,1,1)=1 k(0,1,-1)=n/a
6=5° k(1,0,0)=0.7079 k(0, 1, 4.66)=0.9826 k(0, 1, —28.3)=1.0720
6=10° k(1,0,0)=0.7005 k(0, 1, 3.50)=0.9443 k(0, 1, —9.20)=1.0816
6=15° k(1,0,0)=0.6891 k(0, 1, 2.71)=0.8973 k(0, 1, —5.13)=1.0841
6=20° k(1,0,0)=0.6748 k(0, 1, 2.19)=0.8473 k(0, 1, —3.44)=1.0790
6=25° k(1,0,0)=0.6593 k(0, 1, 1.82)=0.7989 k(0, 1, —2.53)=1.0683
6=30° k(1,0,0)=0.6492 k(0, 1, 1.54)=0.7562 k(0, 1, —1.95)=1.0549
6=35° k(1,0,0)=0.6321 k(0, 1, 1.32)=0.7230 k(0, 1, —1.54)=1.0424
6=40° k(1,0,0)=0.6240 k(0, 1, 1.15}=0.7017 k(0, 1, —1.24)=1.0333
6=45° k(1,0,0)=0.6211 k(0,1,1)=0.6945 k(0,1,—-1)=1.0300
cellation of the distortion to be this good. If fact, these are D. Vibrations

the only cases when it is perfect; in the general case, this Large vibrations and other dynamics can only be com-

adjustment can only be expected to cancel out the main digyetely understood via the full set of the dynamical equations
tortion. It will be shown below that for static solutions, the (3) and (4). For small vibrations, eigenmodes of the linear-
result is extremely good. For dynamic solutions, as will be;,o4 ODE’s can be found using standard meth@sThere
shown below, agreement with the full numerical simulationis g need to display all the involved but straightforward
ranges from very good to merely reasonable. This disagregetails here. The essential results are that small vibrations of
ment may not be due to the Gaussilnsatz per sebut  he separatiory decouple from those of the widths, and
rather to the fact of the variational approximation. .. Two distinct eigenmodes of the width vibrations can be
The most critical difference between the Gaussian an‘x\i/entified, one “in phase,” with both widths decreasing and

sech wave forms is tf]at the Gau.ssiar.]’s tails have much_ 'e§ﬁcreasing synchronously, and the other one “out of phase,”
energy than the sech’s exponential tails, or, expressed d'ﬁe(/vith the two widths oscillating with a phase shift At po-

ently, the Gaussian is more compact than the hyperbolic S8arization angle®)=0° to §=45°, with the total energ

cant. This difference is most important when the components. 5— ; :
of the soliton are widely separated, in which case the Gauss- 27, the modal eigenvector§he components of which

ian greatly underestimates the Hamiltonian for the couplin are the deviations of, Wy, andW, from their steady-state
9 Y ; L P alueg and their associated frequencies are collected in
between the two components. This regime is not the focus

the present work. Accurate representation of the tail is muc able Il (the “frequencies” are herepatial frequencies, or
pre U P e . . rbropagation constants, because the evolutional variable is the
more important for “light bullets” in the multidimensional

case(bulk media than it is for one-dimensional solitons in propagation d!stance). To obtain the eigenmodes for the
optical fibers[19]. total energy different fromy2, one should scale the fre-

In more explicit mathematical form, we take a solution toquencies in proportion to the energy squared. For polariza-
Egs. (4), which govern the evolution’of the Gaussiam-  1on anglest between 45° and 90°, it is sufficient to take the

satZs parameters, but insert the parameters not into thgomplemen't of the angle, (09900)’ and mterchangq andv.
Gaussian ansat2) but rather into The particular cas@=0° corresponds to the singl¢d)
component soliton. With zero energy i only one of the

vibrational modes can exist. The cage45° is the soliton

—Yu : with the energy split half-and-half between the componants
__ asech _
u(z)=Ay secV( Wﬁecﬁ) exi(a,+by(t=yy) andv. The analytic solutions for the eigenvectors and the
) associated eigenfrequencigsropagation constantof the
+eu(t=yy))] (6b)  p=45° Gaussian pulses with an arbitrary cross-phase modu-
lation coefficientB are
t—-y, . 1+B\32E2
sech
= + - =BY
v(z,t)=A, secVﬁ—hwiec)exr[l(av b,(t—vy,) kGaust1,0,0)=B1 Z(T) 7o (78
+e,(t=yy)d)], (60)
_ _ _ _ . 1+B\2E?
with the widths and amplitudes rescaled according to Eq. k=24s%0,1,1) = | 5. (7b)
(6a). Despite thead hocnature of this adjustment, the heu-
ristic motivation given above makes it promising. In Sec.
Il D, we check the results against direct numerical simulation > 2
of the underlying PDE’41), and conclude that our approach KGO, 1~ 1) = /1+ 3B (1+ B E_ (70
indeed provides for a drastic improvement of the accuracy. o 1+B\| 2 2
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It is useful to compare these expressions to those producesht propagation constants of the corresponding stationary

by the sech-based approximatif7]

1+B|¥2 E?
ks*11,0,0 =Bl’2(—) —, 8
{ ) 5 N (89)
kseh0,1,1) = L+B|*E7 8b
[} 1)_ T Z! ( )
0,1 1) /1+(4772/15)B 1+B\2E? g
1-b)= 1+B 7| 22 ©9

[the out-of-phase sech-based eigenm@iewas not derived

in Ref. [6], but it can be obtained within the same formal-

ism]. In particular, at the physically important valie= 2,
the sets of the eigenfrequencigs and(8) are, respectively,

E2
kGa“SS:(0.6211,0.6943,1.029%—, (99
v
E2
sech_
k (0.5038,0.6943,0.995%?, (9b)

where the components of tvectork are, in order, the spa-

tial frequencies of the eigenmodék 0,0, (0,1,2), and(0,1,

soliton, that can be found either numericdlly6] or by the
VA method[8].

If a mode’s(spatia) frequency lies inside the continuum
(radiation spectrum(outside the band gapthe oscillation
mode couples to the radiation and is therefore subject to
decay. If the oscillation mode’s frequency is located inside
the band gagoutside the continuum spectrymhe oscilla-
tions do not couple to the radiation, and they should there-
fore persist. Harmonics of the small vibrations, generated by
the nonlinearity, do give rise to multiple frequencies that
resonate with the continuum, but radiative losses through the
higher harmonics are usually extremely weéak].

Compare eigenfrequencié® with the spectral gaflOb).

The predicted frequency of the relative-position oscillations
keN1,0,0) belongs to the gap, while the predicted frequen-
cies of the width oscillation&¢°10,1,1) andks*°{0,1,—1)

do not. Of the two predicted frequencies of the width oscil-
lations, the frequency of the in-phase mok#°10,1,1)

is closer to the gap, and the out-of-phase frequency
kseh0,1,— 1) is farther from it(we begin the analysis with
ksehrather thark®@SSbecause the numerical results in Sec.
Il demonstrate that, a#=45°, the former are closer to the
vector soliton’s actual spatial frequencies than are the [atter.
This suggests that the oscillation of the separation between
the centers of the vector soliton’s two components should be

—1). At polarization angles other than 45°, however, thethe stablest eigenmode, while the out-of-phase width oscilla-
eigenmodes cannot be consistently accommodated by thfns, whose positions are deepest inside the radiation spec-

sech-based approximation with equal widths, sincg/at5°,
the fixed-point solution has unequal widtlg=€ 1 exceptey
i.e., equal widths are a nonequilibrium state.

E. Eigenfrequencies and spectral gap

The stability and instability of the different oscillation
modes of the perturbed vector soliton can be explained b
considering the unperturbed one as a nonlinear structure th
protects itself from decay into radiation by placing its eigen
frequency into a spectral gap in which propagating radiatio
modes do not exist. Generally speaking, this corresponds {

the definition of agap soliton[15]. The stationary soliton

creates gaps in the linear spectra of oscillatory modes loca

l%/alues relative to the gaps can also be calculated for polar-

trum, should be most unstable. The numerical results pre-
sented in Sec. lll completely corroborate these predictions.
At arbitrary positive values of the cross-coupling coeffi-
cient B+#%, the in-phase frequenc8b), and out-of-phase
frequency(8c) are always outside the gdf0g, while the
position-oscillation frequency8a) is inside the gap when

| the three oscillation frequenci€8) are well into the ra-
lation spectrum. The position of the VA-generated eigen-

§\<15/17%O.882. Note that for circular ellipticity§=2) [1]

5ations other than 45°, but this is physically less important,
and the analysis would necessarily be lengthy and techni-
F_ally involved, so we do not pursue it here.

ized around it. For the 45° polarization, the gaps in the spec-

tra of bothu andv components are identical, being centered

at the mean frequency of the solitbog=b,=b'®. They can
be easily found in an exact form from Egd) linearized

around the stationary solitqno variational approximation is

used herg

(1+B)? E?

_ph0)
L N (e

(103

For the case of the linear ellipticitg=2, the gap(10a is

2

E
|[k—b©|<0.5454—.

5 (10b)

The Galilean invariance of the NLS equatioffy implies

that the central frequendy® can be set equal to zero with-
out loss of generality, so we do this henceforth. For polar-

lll. TESTING THE MODIFIED GAUSSIAN
APPROXIMATION BY PDE SIMULATIONS

We simulated the coupled NLS equatioffs with the
cross-phase modulation coefficiet=3 (corresponding to
the linear ellipticity for a variety of initial conditions. The
numerical scheme was the split-step Fourier-transform
method with periodic boundary conditions. The pulse widths
were measured as the standard FWHM, normalized to match
the initial conditions: for initially Gaussian pulses, the widths
were computed as the FWHM divided by 2, and for
initially sech-shaped pulses, the widths were computed as the
FWHM divided by 2 cosh'vZ; the two normalizations dif-
fer by about 6%.

A. Fixed points

ization angles other than 45°, the gap widths are different in Starting from the usual Gaussian VA'’s fixed pofigs.
theu andv subsystems, being determined by the two differ-(2), (3), and(5), or Table I, and numerically propagating the
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solfon wiathe . . e . ' . The hybrid Gaussian-sech approximation, proposed Sec.
Il and based on Eq93)—(6), proves to give much more
12) 1 accurate predictions for the stationary states than the usual
Gaussian VA. The less energetic component’'s wittie
118 1 larger of the twg predicted by the hybrid approximation is

slightly farther from the numerical results than ttsenalle)
width of the more energetic component. There is some de-
pendence on the vector soliton’s polarization angle—the
larger the asymmetry between the components, the larger the
error—but even in the worst case the prediction exceeds the
eventual result by only=1% (and in this worst case for the
less energetic component, the predicted width of the more
energetic one is found to be extremely accuradBmmparing
this with the above-mentioned error of the traditional Gauss-
, . . . . . s 2 ian VA, that predicted widths are greater than the actual
1} 5 10 15 20 25 30 35 40 45 50 . ..
@ values by about one-sixth, we conclude that the empirically
S o modified approach improves the VA accuracy, defined in
098 . . . — . . . . terms of the static widths, by a factor of more than 15; and,
as explained above, the modified mofets. (3)—(6)] iden-
°‘97\/\/\/\—/\’— tically coincides with the exact result in the integrable cases
o6k " | 0=0°, 45°, and 90°. The radiative energy shed by the evolv-
ing vector soliton was too small to measure, in contrast with
0951 1 the case of the usual Gaussian approximation, with quite
appreciable radiative energy losse4%, which is another
drastic improvement offered by the hybrid VA model.
oosf 1 For example, for the vector soliton with polarization
6#=15°, the hybrid model gives the width of the more ener-
0% 1 getic component, against the numerically computed value, to
within an error of +£0.05%, and the width of the less-
energetic component is 1.1% more than the numerically
osf 1 computed final width. AB=30°, the hybrid model gives the

. —~ | less energetic component’s width as 0.5% too high, and the

BT R T more energetic component’s width as 0.1% too low. Figure

® 1(b) illustrates this, showing the evolution of the widths in

FIG. 1. (a) Evolution of the vector soliton’s widths in the PDE’s the PDE simulations, starting from the fixed point of the
(1) starting from the fixed point predicted by the usual Gaussiarhybrid model with the total energg= \27 and polarization
approximation[Egs. (2-(5)] for the case§=30°, E=y2m. (b)  9=30°. In the limiting case when nearly all the energy is in
Evolution of the widths starting from the corresponding fixed point gne component, the equation for the other component can be
of the hybrid Gaussian-sech approximatifgs. (3)—(6)]. The |inearized and an exact solution for it can be obtaifsek,
larger and smaller Wi.dth are the less energetic and more energefig, example, Ref[18]); in this case, the modified VA based
components, respectively. on Egs.(3)—(6) overestimates the FWHM of the quasilinear
component by just under 1.5%.

094

091

pulse, we observed that slightly more than 99% of the initial
energy is ultimately retained by the soliton, with about 1% of
the energy lost to emitted radiation. The exact size of the
radiative losses depends slightly on the polarization afigle  Near equilibrium, the Gaussian VPEQs. (2)—(4)] pre-
of the soliton. By this measure—the share of the net energdicts three small-vibrational modes, as described in Sec.
going into the soliton—the predictions of the usual Gaussianl D. In the PDE simulations, the most persistent mode was
VA are quite good, although the radiative losses ignored byound to be oscillations of the separation between the two
this traditional version of VA are tangible. components of the soliton. The next most persistent mode
If we compare the eventualidths of the vector solitons were in-phase oscillations of the two widths. The out-of-
to their initial values, the traditional Gaussian-based VAphase width vibrations were found to be more than merely
gives a not-so-good agreement with the numerical resultdess persistent than the other two modes; this mode proved to
The FWHM widths at the end are about one-sixth smallebe unstable, showing a clear tendency to rearrange itself into
than at the start. This is, as expected, due to the inheremhe in-phase vibrational mod@ve stress that this is not a
inaccuracy of the Gaussiginsatz(see Sec. Il §; but itis a  radiative instability: the initially out-of-phase vibrations of
serious drawback nonetheless. To illustrate, Fi@) $hows the two widths eventually synchronize themselves into the
the numerically simulated evolution of the pulse widths,in-phase vibrations, but without shedding more radiation
starting from the fixed point of the usual Gaussian approxithan comparable in-phase vibratiofvery little radiation is
mation, with the total energyfE=\2x and polarization emitted in either cage This numerical observation is in an
0=30°. apparent contrast with the predictions of the VA model,

B. Oscillations
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which provides no mechanism to account for this effectfrequencyk™(0,1,—1)=0.56(E?/27) is definitely outside
However—bringing in another analytical tool to complementthe gap.

the VA—consideration of the spectral gap offers an explana- The in-phase vibrational mode looks, numerically, like an
tion. Although the rearrangement of the out-of-phase oscilattractive dynamical regime. Starting from initial conditions
lation mode into the in-phase one is not accompanied by gorresponding to a mixture of the in-phase and out-of-phase
conspicuous emission of radiation in the numerical simulamodes, we always observed the out-of-phase component to
tions, the former mode’s instability is directly predicted by die out much faster than the in-phase mode. The numerical
the analysis presented in Sec. II: this mode is expected to k&mulations showed that the drop of the out-of-phase mode’s
strongly unstable because it is located famtside the amplitude isnot a result of radiative losses—very little ra-
stability-providing band gap. The gap, actually, should bediation is emitted by the vibrating vector soliton in the
Compared to the numerica“y Computed eigenfrequencies gourse of its evolution. A more detailed analySiS of the nu-
the three modes, rather than to the frequencies predicted Bperical results offers another explanation for the effect,
the VA this will be done in detail below for the 45° polar- baseq on.conS|derat|on of the model’s Hamﬂ_toman. Th(=T soli-
ization. As for the fact that practically no radiation is finally N Vibrations are a part of the total Hamiltoniginthe static

emitted in the course of the rearrangement of the unstabl%omo,lr: IS at a;trr:unlmtunfﬂ)h For t.ge tsam? an:jpll'gudfe, tzet
mode into the stable one, this may be explained as follows; amiitonian ot tne out-ol-phase vibrational mode 1S tound to
e about twice as large as the Hamiltonian of the in-phase

the radiation released by the decaying unstable mode is i vibrational mode. So at a given value Hfthe oscillations

me_diately captured by the growi.ng _stable one, h_elping tc’[ransforming from out of phase to in phase should decrease
build up the in-phase width oscillations. In principle, the in amplitude

energy exchange between the vibrational modes can be in- 14 \/a predictions, compared to the PDE-simulation re-
corporated into the extended VA by adding extra degrees °§ults, grow worse when one component has more energy
freedom to theAnsatz as was done by Kath and Smyth for han the other. The computed frequencies then tend to be
the single NLS equatiofi1]; however, for the coupled NLS  smajler than the analytic predictions. At the polarization
equations, such an investigation turns out to be extremely=30°, the PDE simulations give a frequency of the relative-
involved, and is therefore not included in this work. position oscillationsk™™(1,0,0)=0.49E?/27), compared
Comparing the VA predictions with the PDE simulations to k®24s§1,0,0)=0.65(?/27) in the Gaussian-based ap-
shows that the oscillation frequencies and eigenvectors afgroximation (the usual sech-based approximation does not
fairly well predicted by VA when the energy is nearly evenly apply to polarizations different from 45°The frequency of
divided between the components. When the energy is almosite in-phase width oscillations was found numerically to be
entirely concentrated in one component, the predictions ark™™0,1,1)=0.65E?%/27), compared to k®25%0,1,1)
also quite accurate, but for a trivial reason—the importance=0.76(E2/2) in the Gaussian model. The out-of-phase os-
of the less-well-predicted, less-energetic component deeillation mode was found to be very unstable at the polariza-
creases as its energy decreases. tions different from 45°, so that its frequency could not be
We start with polarizatio®=45°. For the mode in which computed accurately. To make another comparison: at the
the predictions based on the usual Gaussian and sech agame polarizationf=30°, but without coupling between the
proximations disagree the most, small oscillations of thecomponents,B=0, the standard variational prediction is
separation between the centers of the two vector soliton conk®®c"=0.56(E2/27) for the width oscillations in the more en-
ponents[see Eqs(9)], the PDE results ar@uite naturally  ergetic component.
closer to the sech model’s predictions: the simulations yield At the polarizationf=15°, the PDE simulations give the
the frequency k™"(1,0,0)=0.53E?/27), compared to frequency of the relative-position oscillation&“™(1,0,0)
kse°11,0,0)=0.50E?/27) and k®31,0,0)=0.62E?/27w)  =0.46(E%/27), compared tok®2'{1,0,0)=0.69E%/2).
for the usual sech-based and Gaussian approximations. TA&e in-phase frequency was found to B&“™0,1,1)
in-phase width oscillations prove to be slower than pre-=0.74E?/27), compared tok®2'{0,1,1)=0.90(E?/21).
dicted: k""(0,1,1)=0.54(E?/27) in the PDE simulations, The out-of-phase oscillation mode was again too unstable for
compared tokse0,1,1)=k®35¢0,1,1)=0.69(E>/27) pro- its frequency to be computed. Without couplif§=0), the
duced by both variational approximatiofigh) and (8b). In  variational prediction would b&3®¢"=0.87(E?/27) for the
contrast to these results, the out-of-phase width oscillationgidth oscillations in the more energetic component.
turn out to be very significantly slower than predicted by the In addition to this, the simulations reveal that, in the
VA (although the measurements in the simulations is diffi-course of each oscillation cycle, the less energetic compo-
cult due to the instability of the mogtethe numerically com-  nent peaks slightly later than the more energetic one, and the
puted frequency i&™M0,1,—1)=0.56(E%/27), compared less energetic component does not oscillate by as rret
to k%¢°10,1,—1)=0.99E?/27) [Eq. (70)] or k®®5%0,1,—1) tive to the more energetic compongmts predicted by the
=1.03E?/27) [Eq. (80)]. VA (see Table . As predicted, at#=45°, the widthsW,,
Equation(10) yields, for §=45°, a spectral gap of width andW, vary by the same amount during oscillation. Not as
0.5454€2%/27). Thus the above-mentioned numerically predicted, atd=30° and atf=15°, the widths of the two
computed frequencyk™™1,0,0)=0.53(E%/2w) of the components also oscillate by the same amount during the
position-oscillation eigenmode is indeddside the gap, oscillations; the VA predicts the less energetic component’s
while the in-phase width-oscillation eigenmode’s frequencywidth varying by more than the width of the more energetic
k™™0,1,1)=0.54(?%/27) is almost exactly at the gap’s component. The width of the less energetic component may
edge, and the out-of-phase width-oscillation eigenmode’peak(or bottom ou} after the more energetic component, the



. In [(yPSCy™" ) 2] 0=30"
(Yoo )2 _
! =45 4 ;
0.018—%— T T T T T T %
0.016} -
s ]
0.014} E
0012 4 -r 1
0011 B *
s ]
*
0.008} E
*
L i -8 J
0.006 .
*
0.004} E
* -9+ * 4
0.002} ok . B
* * * * * * *
*
R . . , , . . , 2 10 ) , . In@)
[) 10 20 30 40 50 60 70 80 15 2 25 3 35 45
(a} (d)
In [ (wheek_ wiouah ) 27 0=30"
-3
o trough 2 R T T T T T T T
In (WP W ) 2] 0=45 o
-35 T T T T T
4+ x 4
_4l®
—45f _s|- o E
x
—s| o
® -8 x 7
-5.51 o
X
® - 4
-8 -7
0
®
—65[ ® sk x 4
® o x x
® ® O
-7F ® X xo
o
® . ol o 1
@
-7.5f
@ o
( ) ( 1 ( In{2) —10 1 1 L 1 1 1 1 z
15 2 25 3 35 4 () 10 20 30 40 50 60 70 80
(b} (©)
I [( WU yosak 2 045" Inf (yPok-y™™uh )2 6=15
-4 - T T T T T T " i i i
*
_s J
s} ]
s J
7+ ° E I |
*
-8t B -r 1
-ot g _sb * ]
x
—10r -
o _ob ]
*
R g
10 *
x [e] -1°r 7
12+ 4 *
o
13 * -1 |
X ° *
4 . , . , . X % 12 . . . In(2)
()] 10 20 30 40 50 60 70 1 15 25 35 45

©

®

FIG. 2. Typical examples of evolution of the vibrational modes in direct numerical simulations of the coupled NLS eqUatiuitis

the cross-phase modulation coeffici@nt % Parts(a)—(c) have polarizatiord=45°, parts(d) and(e) have#=30°, and partsf) and(g) have

6=15°. All the simulations were performed for the eneffy 2. The asterisk indicates the separatjonetween the componenfigarts

(a), (d), and(f)]; a cross(x) is the width of theu component, and a circl) is the width of thev componenfparts(b), (c), (e), and(f)].

The vertical axes show the peaksr troughsg of the soliton parameters minus the previous trou@rspeaks, squared; parfc) is an
exception, showing the troughs ol better illustrate a switch from the out-of-phase to in-phase oscillatidime horizontal axes show

the positions at the forward of the peaks or troughs. The initial pulses are sech shaped, with the vector soliton’s initial parameters taken at
the fixed point predicted by the hybrid VA, except for the initial separations in the péeldl), and(f), which are added as perturbations

to the predicted fixed points in order to excite the separation oscillations.
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In_lzm"’"*—w‘”“gl“)*l ' _ e ' . forward peaks or troughs. Figuréa® shows the separation
° mode of a#=45° soliton, on a straight scale. A remarkable
feature displayed by this plot saturation the decay virtu-
ally ceases at a finite amplitude. Figurdpis a log-log plot
of the in-phase width oscillations of 8=45° soliton. The
approximately straight line yields a power-law decay
o ~z 107 Note that the power-law decay is very slow in com-
| parison with other common forms of loss, such as the expo-
o nential decay which would be caused by dissipative losses.
T g i Figure Zc) shows the evolution of an initially out-of-phase—
o perturbed =45° soliton (initial widths are [(6/5)v2/m
52 | +0.1)], with a log scale on the vertical axis. There is only
one data point per period—only the troughs are displayed
here—unlike the other plots which show both peaks and
troughs. While initially the troughs of the two components
; 2 L Y . v : s are exactly out of phase, after six periods the two compo-
@ nents are more than halfway to being in-phase. Note that the
FIG. 2. (Continued. oscillations of the component which is catching up are larger
than those of the advanced component.
delay generally being from 5% to 10% of the oscillation Figure 2d) shows the separation mode offa30° soli-
period. A general conclusion suggested by the simulations dPn, starting with the equilibrium widths predicted by the
the full PDEs(1) is that the two components of the vector hybrid VA. This mode is less stable than in the case of
soliton oscillate more or less separately when the energy i§=45° polarization: after some settling down of the widths,
distributed unevenly between them, with the more energeti¢he vibrational Hamiltonian decays according to a power law
one dominating and the less energetic one being pulled-z ** (note no saturation Figure 2e) shows nearly in-
along. This feature can be conceived in the following way:phase width oscillations of thé=30° soliton. The waviness
the more energetic component has, by itself, a higher freof the oscillation modes’ slopésscillations of the widths of
quency of the internal width vibrations than the less enercomponentsi andv represented by crosses and circles, re-
getic one, so it will tend to oscillate faster, running ahead ofspectively is due to the disappearing out-of-phase compo-
the less energetic component. The relatively small oscillanent. The decay is very roughlyz~2, although the pres-
tions (compared to the VA predictigrof the less energetic ence of the dying out-of-phase component obscures this.
componentthe less energy in the component, the greater thé\Iso note that the extrema of the less energetic companent
disparity between the VA prediction and the numerical re-(circles are slightly delayed compared to those of the more
sult9 are consistent with this component’'s being merelyenergetic component (crosses
driven (pulled along by the more energetic one when the Lastly, Fig. 2f) shows a log-log plot of the separation
energy is split unevenly. The more uneven the division ofmode of the §=15° soliton. The corresponding widths
energy, the more the oscillating vector soliton will resemble(which are not displaygcare initially at the fixed point pro-
a composite of two relatively weakly coupled, separateduced by the hybrid VA, and suffer only a very slight read-
single-component solitons, rather than a single unit. Thigustment in the course of the simulations. The decay is a
trend is compatible with the above-mentioned circumstancg@ower law, roughly~z~ 2. Figure 2g) is a log-log plot of
that, in the limiting case when the energy of the subordinatéhe nearly in-phase width oscillations of tife=15° soliton.
component is much smaller than in the leading one, the inThe intersections in the plot are, as well as in Fig) 2from
trinsic nonlinearity of the weak component may be ne-the quickly disappearing out-of-phase component. The decay
glected, so that it becomes a linear mode governed by theate is very roughly~z~ 13 although the dying out-of-phase
leading componeritl8]. component obscures this. Observe that the vibrational phase
Figure 2 illustrates the dynamics of various oscillationof the less energetic componant(circles is delayed com-
modes. The vertical axes measure the changing Hamiltonianzared to the more energetic ondcrosses
of the oscillation modes. For the small oscillations near equi- For the #=45° soliton, the leveling offsaturation of the
librium, the Hamiltonians of the oscillation modes are pro-relative-position oscillation at a nonzero amplitufieig.
portional to the squares of the maximum variations from2(a)], the decay of the in-phase width oscillations at a rate
equilibrium. The VA models yield constants of proportion- slightly faster tharz™* [Fig. 2(b)], and the quick decay of
ality, but different ones for the differennsaze (sech, the out-of-phase oscillationgFig. 2(c)] generally comply
Gaussian, or hybrigd and inferring the constants of propor- with the numerical observations reported in the very recent
tionality from the direct numerical PDE simulations gives work [3]. However, that work addresses details of the oscil-
yet different values. Provided the perturbations are small, th&ations only in certain limits, yielding less information about
peaks(or troughs of the soliton parameters minus the pre- gradually decaying vibrations than about persistent ones. The
vious troughgor peaks, squared, gives the Hamiltonian up instability of the out-of-phase vibrations with respect to the
to a multiplicative constant. The symbols used are: asteriskis-phase vibrationgrigs. 2c), 2(e), and 2g)] is not captured
(*) for the separationty), and crossefx) and circles(o) for in Ref.[3], nor is the fact that the less energetic component
the widths of theu and v components, respectively. The tends to be delayed in relation to the more energetic one
positionsz on the horizontal axes are the locations of the[Figs. 2e) and 2g)]. At polarizations#+45°, Ref.[3] pre-
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8=30’ 3(a) side by side with the evolution of the same dynamical

' ' ' ' variables(the two widths in the PDE simulations, starting
from the identical initial conditions. This illustrates a fairly
generic conclusion supported by a number of runs: in the
cases where the ODEs produced by the variational approxi-
mation predict dynamical chaos, the PDE simulations dem-
onstrate that, in reality, the large-amplitude oscillati@hs
ways decay (and for the out-of-phase mode, even small-
amplitude oscillations decayso quickly that the vector
soliton internal vibrations do not exhibit dynamical chaos.

35

25F

IV. CONCLUSIONS

The variational approximation’s predictions for the dy-
namics of a two-component vector soliton governed by a pair
of coupled NLS equations were examined in detail. Looking
w at the system as a nonlinear structure protected from decay

by the spectral gaps, and comparing the vector soliton’s vi-
solfonwidths , 080 . , brational frequencies with the spectral gaps, yields additional
predictions concerning stability of the different vibrational
modes. The predictions were systematically tested against

3r ] direct numerical simulations of the PDEs. Generally, agree-
T oW ment was good, consistent with previous works, which dem-
a5k L onstrated that the variational approximation usually yields

very reasonable resulf§—11]. Starting from the initial con-

ditions corresponding to the fixed points predicted by the

GaussiarAnsatz PDE simulations showed théor the case

. . _ of the linear ellipticity over 99% of the initial energy goes

T p 1 into the final pulse, and the retill an appreciable sharés

: ’ ' lost to radiation. However, the vector soliton’s widths de-

) crease by about a sixth. Because of these errors, the tradi-

tional variational approximation based on the Gaussgian

satzis in some respects not veripr at al) close to the

. - -+ = = o genuine stationary states, and so is sometimes a poor tool to
® analyze the vector soliton’s small-vibrational modes or other

subtle effects; this approximation nevertheless yields three

fundamental eigenmodes qualitatively correctly and to a de-

gree quantitatively correctly.

05
[

FIG. 3. (a) The Poincarenap generated by a typical dynamical
trajectory of the ODE approximatiofEgs. (3)—(6)] with §=30°

andE= 27, starting from initial conditiona\s*"=1.1 andws®" ) .
=0.6, the initial separatiog and phases being zer() Evolution To remedy these drawbacks of the Gaussian approxima-

of the widths of the two vector soliton’s components vs the propa-tion’ we have proposed a hybrid variational technique, using
gation distance, starting from the same initial conditions @: the ~ POth the Gaussian—to produce the finite-dimensional dy-
solid lines are the PDE results, and the dotted lines are obtaineg@mical system, which is the essence of the variational

from the ODES(4) derived by means of the variational approxima- @Pproximation—and a secAnsatz—to readjust the vector
tion. soliton’s shape at the end. This hybrid model gives an excel-

lent approximation for the stationary states, so that the radia-

dicts permanence of the position oscillation mode, wherea%jve losses are virtually absent, and the widths are predicted

our numerical simulations showed no such permanésee 0 no worse than within about 1% of the numerically found
Figs. 2d) and 2f), for exampla values. While the averaged Lagrangian method using sech

from the star{6,7,1Q is fully tractable only if the two widths
are postulated to be identically equal, and the variational
method using the Gaussian pulses from the start is fully trac-
The VA approximation predicts a possibility of dynamical table but less accurate, the hybrid approximation maintains
chaos in the vector soliton’s internal vibrations with a suffi- the tractability and flexibility of the Gaussian approximation
ciently large amplitude, most noticeably in the case combinand the accuracy of the sech approximation. Given that the
ing the in-phase and out-of-phase width oscillations. For exvariational modelgexcept for the sophisticated modification
ample, Fig. 8a) shows the Poincarenap produced by a put forward in Ref[11]) do not include the radiation modes,
single dynamical trajectory generated by the ODds This  the fact that the steady states predicted by the hybrid ap-
Poincaremap is clearly space filling, corresponding to a cha-proach, on comparison with numerical simulation of the
otic motion. But in the corresponding PDE simulations, thePDE'’s, suffer virtually no radiation loss is a significant ad-
out-of-phase component dies out too quickly for chaos torantage.
appear. Figure (®) shows the chaotic trajectory from Fig.  When the vector soliton’s energy is nearly evenly divided

C. Absence of true dynamical chaos
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between the polarization components, two of the smallto be absolutely robust, persisting indefinitely long. Unlike
vibrational modes predicted by the hybrid variationalthis, the relatively stable in-phase width oscillation mode de-
approximation—vibration of the separation between the ceneays according to a power lagwhich is much slower than
ters of the two components, and the in-phase oscillations aéxponential decay
the two widths—agree well with the direct simulations. The When the energy is unevenly divided between the com-
vibrations of the separation turn out to be most persistentponents, the variational predictions for the stationary states
and the in-phase width vibrations are also fairly long lasting.grow worse for the less energetic component, but better for
The third eigenmode, the out-of-phase vibrations of the twdhe more energetic one. Out of equilibrium, the component
widths, is, in contrast to the variational models’ predictions,with less energy tends to be driven by vibrations of the domi-
unstable against conversion into the in-phase width vibranant component, rather than contributing to the oscillations
tions: initially out-of-phase vibrations tend to quickly syn- in an equal manner, as the averaged Lagrangian variational
chronize themselves, becoming in-phase after a few periodspproximation has it. In the case of uneven energy distribu-
Both the stability of the first two eigenmodes and thetion, the separation mode loses its remarkable robustness,
instability of the third eigenmode can be easily explained byand becomes subject to a slow power-law decay.
comparing their frequencies to the soliton-induced gaps in Finally, we considered the possibility of chaotic internal
the radiation spectra: The first and second frequencies awscillations of the vector soliton. Dynamical chaos is clearly
inside and at the edge of the spectral gap, making the modesxhibited by the sixth-order ODE system generated by the

respectively, very stable and marginally stable. The third frevariational approximation. In the PDE simulations, however,

guency is located well into the continuumadiation, allow-

chaos is never observed. This can be explained by the fact

ing energy to couple out of it, thus strongly destabilizing thethat the quickly decaying out-of-phase width-oscillation

eigenmode.

mode leads to degeneration of the large-amplitude internal

In the case when the energy is divided nearly equallyibrations.
between the two components, the analysis has revealed a

noteworthy feature quite important for the physical applica-

tions (first of all, to the solitons in nonlinear optical fibgrs
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