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Internal vibrations of a vector soliton in the coupled nonlinear Schrödinger equations
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Static and dynamic properties of a two-component soliton are studied via the variational approximation
~VA !, consideration of the radiation spectrum, and direct numerical simulations. The VA, based on a Gaussian
Ansatz, proves to be~as compared to the direct simulations! fairly accurate in some respects and inaccurate in
others—in particular, the predictions for the widths of the stationary states are about a sixth part greater than
the actual widths. We formulate an empirically modified version of the variational approximation: at the end of
the analysis, the Gaussian is replaced by sech with properly rescaled widths. This hybrid VA yields extremely
accurate predictions for the stationary states. The error in the width prediction is&1%, and simulations
demonstrate minuscule radiation losses. The VA model predicts three eigenmodes of the soliton’s internal
vibrations, all of which are observed numerically. Oscillation of the separation between the two components is
found to be the most persistent mode, and in-phase oscillation of the two widths is the next most persistent one;
in contrast, the out-of-phase width oscillations are unstable, quickly rearranging themselves into the stable
in-phase mode. These features are easily explained by comparing the corresponding vibrational eigenfrequen-
cies to the spectral gaps which isolate oscillations localized at the soliton from delocalized radiation modes. For
vector solitons with energy nearly equally divided between the components, the analysis reveals a remarkable
feature:saturationof the separation oscillations, with the radiative decay virtually ceasing at a finite level of
the mode’s amplitude. The relatively stable in-phase width-oscillation mode decays indefinitely, but according
to a very slow power law rather than exponentially. Lastly, for large-amplitude vibrations, the VA models
predict dynamical chaos, but, due to the quick decay of the large oscillations, direct simulations show no chaos.
@S1063-651X~98!05408-7#

PACS number~s!: 42.81.Dp, 42.65.Re, 03.40.Kf
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I. INTRODUCTION

Despite great progress in characterizing solitons in a w
variety of situations, one of the most fundamental cases,
tor solitons governed by a pair of coupled nonlinear Sch¨-
dinger ~NLS! equations, defies solution in some importa
respects. The coupled NLS model and its vector soliton
lutions have a number of interesting physical applicatio
the most important of which is a bimodal optical fiber, whe
the coupled NLS equations govern light propagation in
two polarization components@1#. Except for the special cas
of the Manakov system@2#, with equal self-phase and cros
phase modulation coefficients~which is not the case in the
real bimodal fiber!, when the coupled NLS equations a
integrable, exact analytical results, such as expressions
stationary solitons with arbitrary polarization, or a rigoro
knowledge of how quickly internal vibrations of a perturb
vector soliton fade through emission of radiation, are abs
~though, an important contribution to the latter issue w
recently made by Yang@3#!.

The coupled NLS equations can be well simulated
contemporary numerical techniques. Nevertheless, in the
sence of nontrivial exact solutions, approximate analy
methods remain~in conjunction with direct simulations!

*Electronic address: malomed@eng.tau.ac.il
†Electronic address: tasgal@math.tau.ac.il
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quite useful. In this work, we employ the variational appro
mation ~VA ! based on the averaged Lagrangian@4#, supple-
mented by direct consideration of eigenfrequencies of
vector soliton’s internal modes with respect to the spectr
of the linearized equations~which will turn out to comple-
ment the VA in a very helpful way!. The VA approximates a
soliton by anAnsatzhaving a few free parameters, with th
soliton’s known qualitative features built in, and flexib
enough to accommodate as yet unknown features. TheAn-
satzis substituted into the Lagrangian density of the gove
ing partial differential equations~PDEs!, which is then ex-
plicitly integrated over the temporal variable, leaving
dependence only on the propagation distance~which is the
evolutional variable for the optical fibers or waveguides@1#!.
The Euler-Lagrange equations following from this averag
Lagrangian are a set of ordinary differential equatio
~ODEs! for the Ansatz’s parameters, approximating the sy
tem’s dynamics.

In the integrable limits of the coupled NLS equations, t
vector solitons take a hyperbolic secant~sech! shape@2,5#.
Although this does not hold true for the general~noninte-
grable! case, it is not unreasonable to expect sech profile
be good approximations. For example, the variatio
method with the sech approximation was used to model v
tor solitons in a pair of coupled NLS equations in Refs.@6#
and@7#. The disadvantage of this is that, in order to make
integrals in the VA analytically soluble, the pulse widths
the two polarization components must be postulated to
identical, whereas, in reality, the pulse widths of the tw
2564 © 1998 The American Physical Society
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components are often far from equal. In the physically m
important case of the linear ellipticity, for example, th
widths may differ by one-sixth@8#. A well-known alternative
is a GaussianAnsatz@4#. This is in some respects a les
accurate approximation for the soliton shape, but can acc
modate important features~such as the unequal widths!, that
the sechAnsatzcannot@4,8–11#.

In this work, we formulate an empirically improved ve
sion of the VA, combining elements of both the Gauss
and sech-based models. The calculations are based
GaussianAnsatz, with an ad hocmodification of the results
to the sech shapeat the endof the analysis. We compare th
predictions of the usual Gaussian-based VA and of the ne
proposed hybrid model with direct numerical simulation
the PDEs, focusing especially on the predictions which
Gaussian VA makes but which the sech model cannot.

The results show that the usual Gaussian VA is gener
accurate, save for the numerically observed relaxation of
vector solitons from their predicted Gaussian shapes to
final sechlike ones. This proviso is not insignificant, as,
the course of the relaxation, the pulse’s full width at h
maximum~FWHM! drops by about one-sixth before reac
ing equilibrium, and this readjustment process occludes o
more subtle effects. In contrast, our hybrid~but essentially
Gaussian! VA yields excellent predictions for the static so
lutions, especially for the vector soliton’s widths, which a
at worst only about 1% greater than the exact numerical
sult, and are usually much better than that. Another stren
of the hybrid VA is related to the radiative losses: while t
configurations produced by the usual Gaussian approxi
tion lead, in direct simulations, to about 99% of the ene
trapped into the vector soliton and 1% being lost to disp
sive radiation, the hybrid VA ends up with virtually all th
energy remaining in the soliton~numerical simulations
showed no detectable emitted radiation!. The latter feature is
a significant asset of this version of the VA, since variatio
methods cannot easily accommodate and therefore typic
omit the radiation component of the solution~see Ref.@11#
for a rare exception!. Thus anAnsatzwhich, on comparison
with numerical simulation, gives rise to~virtually! no emis-
sion of radiation has a crucial advantage.

The second objective of this work is an accurate qua
tative analysis of internal vibrations of the vector soliton
means of both the VA and direct simulations. This proble
is important for solitons in optical fibers, especially narro
solitons with widths of few picoseconds or less, for whi
the soliton period is short enough~;1 km! to allow direct
experimental observation of the soliton’s internal dynami
The VA predicts three small vibrational eigenmodes@8#
about the soliton’s steady state. Direct PDE simulations d
onstrate that the most persistent of the predicted mode
oscillation of the separation between the centers of the
polarization components. After that, the next most persis
mode is the one in which the widths of the two compone
oscillate in phase. The third mode, out-of-phase width os
lations, turns out to be conspicuously unstable. The insta
ity, however, is not with respect to the emission of radiatio
but rather with respect to the in-phase width oscillations
vector soliton initially vibrating out of phase tends to quick
rearrange itself into the one with stable in-phase width os
lations. We can explain the robustness of the separat
t
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oscillation and in-phase width-oscillation modes, as well
the instability of the out-of-phase one, by comparing t
eigenfrequencies of these modes with the gaps that insu
the small oscillation modes localized at the soliton from t
continuum spectrum of the delocalized radiation modes.
find that the most robust oscillation mode~the separation
between the centers! is located inside the gap; the secon
most robust mode~the in-phase width oscillations! is almost
exactly at the gap’s edge; and the unstable mode~the out-of-
phase width oscillations! lies outside the gap, well inside th
continuum spectrum. This means that the out-of-phase w
oscillation is not a true eigenmode of the full linearized pro
lem, but rather a so-called quasimode~cf. a known quasi-
mode of the two-component optical soliton in the secon
harmonic-generating medium@12#!.

When the energy of the steady state is evenly divid
between the polarization components, the predictions for
in-phase vibrational mode given by the VA prove~on com-
parison with direct simulation! to be fairly good. But in the
case of a more general polarization, when one compon
has more energy than the other, the more energetic com
nent tends to oscillate as if by itself, with the less-energe
one following along but not~contrary to the VA predictions!
contributing in an equal fashion to the oscillations.

An issue of special interest is the possibility of chao
internal vibrations of the soliton~see, for example, the recen
work @13# where this issue was considered in the framew
of the Zakharov model!. We find that the ODE description
produced by the VA does exhibit dynamical chaos, provid
that the amplitude of the vibrations is large enough~but still
under the threshold for escape or complete radiative de
i.e., splitting of the vector soliton into two single-compone
solitons, or unlimited growth of the widths@8#!. However,
direct PDE simulations demonstrate that the abo
mentioned instability quickly switches off the out-of-pha
mode, and the loss of this degree of freedom, together w
~nonradiative! damping of large-amplitude oscillations in th
other modes, causes the degeneration of would-be cha
oscillations into regular ones.

Yang @3# very recently studied the vibrations of and em
sion of radiation from the vector solitons via a differe
method. Based on a straightforward linearization of the eq
tions about the static solution, Yang found exact small vib
tional solutions in a few special cases, and elaborated a
rithms for determining the true form of the small vibration
numerically in the general case. Reference@3# represents a
great advance in understanding the dynamics of small vib
tions of the vector solitons. The very sophistication of t
methodology, however, makes the general results cum
some to obtain and work with, and obscures some impor
results under a mass of analytic and numerical appara
Our methodology provides a well-motivated and heuris
description of the essential phenomena, leading to fairly
curate predictions, as compared to the direct simulatio
The flexibility and relative technical simplicity of the com
bined technique developed in the present work greatly as
analysis of the numerical observations; thus we confi
some of the results of Ref.@3# for small oscillations, finding
disagreements in some other cases, and we obtain intere
results fornonsmalloscillations, which are for the most pa
beyond the scope of Ref.@3#. In particular, we conclude tha
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the amplitude of the relatively stable in-phase wid
oscillation mode decays indefinitely according to a pow
law, while the decay of the most stable separation m
saturates, leaving a virtually constant finite residual value
its amplitude. The latter result, predicting finite-amplitu
persistent relative oscillations of the two components of
vector soliton, has clearly important physical consequen
for optical fibers. It should be easy to observe experiment
by means of polarization filters and the usual autocorrela
technique@1# in a bimodal optical fiber. Taking a moderate
narrow soliton with temporal width of few picoseconds,
fiber length of several kilometers will be sufficient. The in
tial perturbation exciting the separation mode can be ge
ated by a short additional fiber segment with a strong gro
velocity birefringence.

II. GAUSSIAN APPROXIMATIONS—USUAL AND
HYBRID

A. Basic equations

The basic governing equations for the light propagation
a bimodal nonlinear optical fiber are the well-known coup
NLS equations@1#

iuz1
1
2 utt1~ uuu21Buvu2!u50, ~1a!

ivz1
1
2 v tt1~Buuu21uvu2!v50. ~1b!

The variablesu(z,t) and v(z,t) are the amplitudes of the
electromagnetic waves in each of the polarization modes,z is
the propagation distance, andt is the reduced time~in the
reference frame moving along with the carrier wave!. Equa-
tions ~1! omit some terms which are in the present cont
inconsequential—the phase-velocity and group-velocity b
fringence, and four-wave mixing. These terms are omit
not because they are small, but rather because~except for
some special cases—see, for example, Ref.@14#! they either
can be eliminated by simple transformations, or have ne
zero net effect due to self-averaging.

In this work, all the numerical simulations are done f
the linear birefringence case—the most important one for
optical fibers—which has the nonlinear cross-coupling co
ficient in Eqs.~1! B5 2

3 @1#. The analytic part of the study
however, will be kept general, valid for any positive value
B.

As an approximation for the vector soliton generated
the coupled NLS equations~1!, we choose the GaussianAn-
satz

u~z,t !5AuexpF2
1

2 S t2yu

Wu
D 2Gexp@ i ~au1bu~ t2yu!

1cu~ t2yu!2!#, ~2a!

v~z,t !5AvexpF2
1

2 S t2yv

Wv
D 2Gexp@ i ~av1bv~ t2yv!

1cv~ t2yv!2!#, ~2b!

where all the parameters are functions of the propaga
distancez. Ansatz~2! accommodates a pulse with arbitra
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amplitudes (Au ,Av), widths (Wu ,Wv), and central positions
(yu ,yv). Each component can also have any phase (au ,av),
central frequency (bu ,bv), and frequency chirp (cu ,cv). Not
allowed by theAnsatzare the emission of dispersive radi
tion or more complicated changes in the vector solito
shape. Notice, however, that theAnsatzdoes admit splitting
of the vector soliton into single-component ones@8#.

The averaged Lagrangian variational method, withAnsatz
~2! and governing equations~1!, yields a set of equations fo
all the twelve parameters of theAnsatz@8#. They include four
integrals of motion and six nontrivial evolutional equatio
~which we write below as three second-order equation!.
There are also equations for two variables, the phasesau and
av , which involve other variables but do not themselves
fluence anything else, so are not displayed below. The i
grals of motion are the energiesEu,v in the components

Eu[E
2`

`

uuu2dt5ApAu
2Wu , ~3a!

Ev[E
2`

`

uvu2dt5ApAv
2Wv , ~3b!

the total momentumP,

P[E
2`

` i

2
~utu* 2uut* 1v tv* 2vv t* !dt

5
d

dz
~Euyu1Evyv![2~Eubu1Evbv!, ~3c!

and the Hamiltonian of Eqs.~1!, which we will not need in
an explicit form. It is convenient to define the soliton’s p
larization angleu @8# by tan2 u[Ev /Eu , which allows us to
write Eu5(Eu1Ev)cos2 u and Ev5(Eu1Ev)sin2 u. If the
widths were equal—which is not generally the case—th
the amplitudes of the componentsu andv would be propor-
tional, respectively, to cosu and sinu.

The remaining nontrivial equations of motion for th
widths Wu,v and relative positiony[yu2yv of the vector
soliton’s components are

d2

dz2 Wu5Wu
232

Eu

A2p
Wu

222
2B

Ap
EvWu~Wu

21Wv
2!23/2

3S 12
2y2

Wu
21Wv

2DexpS 2
y2

Wu
21Wv

2D , ~4a!

d2

dz2 Wv5Wv
232

Ev

A2p
Wv

222
2B

Ap
EuWv~Wu

21Wv
2!23/2

3S 12
2y2

Wu
21Wv

2DexpS 2
y2

Wu
21Wv

2D , ~4b!

d2

dz2 y5
d

dz
~2bu1bv!52

2B

Ap
~Eu1Ev!~Wu

21Wv
2!23/2y

3expS 2
y2

Wu
21Wv

2D , ~4c!
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while the chirp parameterscu and cv are expressed in terms of the widths as follows:cu5(2Wu)21(d/dz)Wu and cv
5(2Wv)21(d/dz)Wv .

B. Fixed points

The fixed points of Eqs.~4! correspond to steady-state vector solitons, with the stationary valuesy5cu5cv50 and@8#

Wu5
A2p

Eu
F12Br4S 2

r 211D 3/2G Y F12B2S 2r

r 211D 3G , ~5a!

Wv5
A2p

Ev
F12Br21S 2

r 211D 3/2G Y F12B2S 2r

r 211D 3G , ~5b!
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where the width ratior[Wu /Wv is determined by the equa
tion

BS 2

11r 2D 3/2S r 42
Ev

Eu
D1

Ev

Eu
r 2150. ~5c!

Thus, the energies of the two componentsEu andEv are free
parameters of the stationary vector soliton, the amplitudesAu
andAv being determined by the energies and the widths~5!
according to the relationships~3a! and ~3b!.

While the relative frequency (bu2bv) is zero at the fixed
point, the mean frequency (bu1bv)/2 can take any constan
value, a nonzero one adding a net momentum to the sol
The phasesau andav vary linearly withz at the fixed points,
which, however, does not affect the other parameters of
Ansatz. Finally, all this is inserted back intoAnsatz~2! to
produce a~predicted! vector soliton wave form.

Table I summarizes the predictions produced by the
for the parameters of the stationary vector soliton for
physically most important valueB5 2

3 and a range of polar
ization angles. The Hamiltonians in the table are of the us
Gaussian model~2!, while the values of the widths refer t
either the GaussianAnsatz@Eqs. ~2!# with total energyE
[Eu1Ev5A2p, or ~see below for a description! the hybrid

TABLE I. The widths of the two components predicted for th
stationary vector soliton by the variational approximation, based
the GaussianAnsatzwith total energyE5A2p, or the sechAnsatz
with total energyE52, for a range of values of the vector soliton
polarization angleu. The values of the vector soliton’s Hamiltonia
refer to the GaussianAnsatz. The cross-coupling coefficient isB
5

2
3 .

Polarization Hamiltonian Wu Wv

u50° 20.500 1.0000 n/a
u55° 20.495 1.0038 1.1881
u510° 20.481 1.0149 1.1930
u515° 20.460 1.0330 1.2003
u520° 20.435 1.0571 1.2089
u525° 20.408 1.0860 1.2168
u530° 20.384 1.1175 1.2220
u535° 20.364 1.1489 1.2220
u540° 20.352 1.1774 1.2150
u545° 20.347 1.2000 1.2000
n.

e

e

al

Gaussian-sechAnsatz@Eqs. ~6b! and ~6c!# with E52. Note
that the negativeness of the Hamiltonian is a necessary
bility condition for the soliton~if the Hamiltonian were posi-
tive, the soliton would decay into radiation!. The stationary
widths for other values of the energies can be obtained fr
Table I: in eitherAnsatz, the widths scale as the reciprocal
the total energy, so, to obtain the widths for arbitrary to
energyE, the values borrowed from Table I should be mu
tiplied by (A2p/E) or (2/E), for the Gaussian or sech ap
proximations, respectively. For polarization angles grea
than 45°, one should take the complement of the angle
interchangeu andv.

C. Modification of the Gaussian approximation

In the exactly solvable cases, the vector solitons predic
by the GaussianAnsatz’s fixed points differ from the exac
shapes in a simple way which suggests a transformatio
improve the predictions of the Gaussian-based VA in
general case. The available exact solutions@in the cases
B50, B51, or arbitraryB with u(z,t)5v(z,t)# for the soli-
ton with given energy take a sech form@2,5#, uuu
5Asechsech(t/Wsech), with the width and amplitude related t
those of the GaussianAnsatz~2!, in all the cases, as follows

Wsech5A2/pWGauss, Asech5Ap/23/2AGauss. ~6a!

Note that these relations have the sechAnsatz’s energy,E
52(Asech)2Wsech, equal to the GaussianAnsatz’s energy. The
other parameters, except for the~unimportant! phases, are the
same as in the Gaussian approximation.

This suggests that making the same adjustment in thefinal
results produced by the Gaussian-based VA—replacing
Gaussian by a sech pulse with the parameters rescaled
cording to Eqs.~6a!—may in effect cancel some of the dis
tortions caused by theAnsatz’s artificially forcing the pulse
to take a Gaussian shape, even in the cases when exac
lutions are not available.

To estimate the importance of the adjustment, we n
that if, in the soluble cases, all the energy of the Gauss
initial pulse were to go into the final sech pulse, its~stan-
dardly defined! FWHM width would end up a factor
@(& cosh21&)/Ap ln 2#'0.845 smaller than at the start.

For the exact soliton, this adjustment yields the exact
lution; therefore this adjustmentexactlycancelsall the dis-
tortions. There is no reason in the general case for the c

n
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TABLE II. The modal eigenvectors and the corresponding eigenfrequencies for the small internal
tions of the vector soliton, as predicted by the variational approximation based on the GaussianAnsatzwith
total energyE5A2p, at different values of the polarization angleu.

Polarization Separation In-phase mode Out-of-phase mode

u50° k(1,0,0)5n/a k(0,1,1)51 k(0,1,21)5n/a
u55° k(1,0,0)50.7079 k(0, 1, 4.66)50.9826 k(0, 1, 228.3)51.0720
u510° k(1,0,0)50.7005 k(0, 1, 3.50)50.9443 k(0, 1, 29.20)51.0816
u515° k(1,0,0)50.6891 k(0, 1, 2.71)50.8973 k(0, 1, 25.13)51.0841
u520° k(1,0,0)50.6748 k(0, 1, 2.19)50.8473 k(0, 1, 23.44)51.0790
u525° k(1,0,0)50.6593 k(0, 1, 1.82)50.7989 k(0, 1, 22.53)51.0683
u530° k(1,0,0)50.6492 k(0, 1, 1.54)50.7562 k(0, 1, 21.95)51.0549
u535° k(1,0,0)50.6321 k(0, 1, 1.32)50.7230 k(0, 1, 21.54)51.0424
u540° k(1,0,0)50.6240 k(0, 1, 1.15)50.7017 k(0, 1, 21.24)51.0333
u545° k(1,0,0)50.6211 k(0,1,1)50.6945 k(0,1,21)51.0300
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cellation of the distortion to be this good. If fact, these a
the only cases when it is perfect; in the general case,
adjustment can only be expected to cancel out the main
tortion. It will be shown below that for static solutions, th
result is extremely good. For dynamic solutions, as will
shown below, agreement with the full numerical simulati
ranges from very good to merely reasonable. This disag
ment may not be due to the GaussianAnsatz per se, but
rather to the fact of the variational approximation.

The most critical difference between the Gaussian
sech wave forms is that the Gaussian’s tails have much
energy than the sech’s exponential tails, or, expressed di
ently, the Gaussian is more compact than the hyperbolic
cant. This difference is most important when the compone
of the soliton are widely separated, in which case the Ga
ian greatly underestimates the Hamiltonian for the coupl
between the two components. This regime is not the focu
the present work. Accurate representation of the tail is m
more important for ‘‘light bullets’’ in the multidimensiona
case~bulk media! than it is for one-dimensional solitons i
optical fibers@19#.

In more explicit mathematical form, we take a solution
Eqs. ~4!, which govern the evolution of the GaussianAn-
satz’s parameters, but insert the parameters not into
Gaussian ansatz~2! but rather into

u~z,t !5Au
sechsechS t2yu

Wu
sechDexp@ i ~au1bu~ t2yu!

1cu~ t2yu!2!#, ~6b!

v~z,t !5Av
sechsechS t2yv

Wv
sechDexp@ i ~av1bv~ t2yv!

1cv~ t2yv!2!#, ~6c!

with the widths and amplitudes rescaled according to
~6a!. Despite thead hocnature of this adjustment, the heu
ristic motivation given above makes it promising. In Se
II D, we check the results against direct numerical simulat
of the underlying PDE’s~1!, and conclude that our approac
indeed provides for a drastic improvement of the accura
is
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e-

d
ss
r-
e-
ts
s-
g
of
h

e

.

.
n
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D. Vibrations

Large vibrations and other dynamics can only be co
pletely understood via the full set of the dynamical equatio
~3! and ~4!. For small vibrations, eigenmodes of the linea
ized ODE’s can be found using standard methods@8#. There
is no need to display all the involved but straightforwa
details here. The essential results are that small vibration
the separationy decouple from those of the widthsWu and
Wv . Two distinct eigenmodes of the width vibrations can
identified, one ‘‘in phase,’’ with both widths decreasing a
increasing synchronously, and the other one ‘‘out of phas
with the two widths oscillating with a phase shiftp. At po-
larization anglesu50° to u545°, with the total energyE
5A2p, the modal eigenvectors~the components of which
are the deviations ofy, Wu , andWv from their steady-state
values! and their associated frequencies are collected
Table II ~the ‘‘frequencies’’ are herespatial frequencies, or
propagation constants, because the evolutional variable is
propagation distancez!. To obtain the eigenmodes for th
total energy different fromA2p, one should scale the fre
quencies in proportion to the energy squared. For polar
tion anglesu between 45° and 90°, it is sufficient to take th
complement of the angle, (90°2u), and interchangeu andv.

The particular caseu50° corresponds to the single-(u)
component soliton. With zero energy inv, only one of the
vibrational modes can exist. The caseu545° is the soliton
with the energy split half-and-half between the componenu
and v. The analytic solutions for the eigenvectors and t
associated eigenfrequencies~propagation constants! of the
u545° Gaussian pulses with an arbitrary cross-phase mo
lation coefficientB are

kGauss~1,0,0!5B1/2S 11B

2 D 3/2 E2

2p
, ~7a!

kGauss~0,1,1!5S 11B

2 D 2 E2

2p
, ~7b!

kGauss~0,1,21!5A11
3B

11B S 11B

2 D 2 E2

2p
. ~7c!
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It is useful to compare these expressions to those produ
by the sech-based approximation@6,7#

ksech~1,0,0!5B1/2S 11B

2 D 3/2 E2

2A15
, ~8a!

ksech~0,1,1!5S 11B

2 D 2 E2

2p
, ~8b!

ksech~0,1,21!5A11
~4p2/15!B

11B S 11B

2 D 2 E2

2p
~8c!

@the out-of-phase sech-based eigenmode~8c! was not derived
in Ref. @6#, but it can be obtained within the same forma
ism#. In particular, at the physically important valueB5 2

3 ,
the sets of the eigenfrequencies~7! and~8! are, respectively,

kGauss5~0.6211,0.6943,1.0298!
E2

2p
, ~9a!

ksech5~0.5038,0.6943,0.9953!
E2

2p
, ~9b!

where the components of thevectork are, in order, the spa
tial frequencies of the eigenmodes~1,0,0!, ~0,1,1!, and~0,1,
21!. At polarization angles other than 45°, however, t
eigenmodes cannot be consistently accommodated by
sech-based approximation with equal widths, since atuÞ45°,
the fixed-point solution has unequal widths (B51 excepted!,
i.e., equal widths are a nonequilibrium state.

E. Eigenfrequencies and spectral gap

The stability and instability of the different oscillatio
modes of the perturbed vector soliton can be explained
considering the unperturbed one as a nonlinear structure
protects itself from decay into radiation by placing its eige
frequency into a spectral gap in which propagating radiat
modes do not exist. Generally speaking, this correspond
the definition of agap soliton@15#. The stationary soliton
creates gaps in the linear spectra of oscillatory modes lo
ized around it. For the 45° polarization, the gaps in the sp
tra of bothu andv components are identical, being center
at the mean frequency of the solitonbu5bv[b(0). They can
be easily found in an exact form from Eqs.~1! linearized
around the stationary soliton~no variational approximation is
used here!:

uk2b~0!u,
~11B!2

16/p

E2

2p
. ~10a!

For the case of the linear ellipticity,B5 2
3 , the gap~10a! is

uk2b~0!u,0.5454
E2

2p
. ~10b!

The Galilean invariance of the NLS equations~1! implies
that the central frequencyb(0) can be set equal to zero with
out loss of generality, so we do this henceforth. For po
ization angles other than 45°, the gap widths are differen
theu andv subsystems, being determined by the two diff
ed

he

y
at

-
n
to

l-
c-

-
in
-

ent propagation constants of the corresponding station
soliton, that can be found either numerically@16# or by the
VA method @8#.

If a mode’s~spatial! frequency lies inside the continuum
~radiation! spectrum~outside the band gap!, the oscillation
mode couples to the radiation and is therefore subjec
decay. If the oscillation mode’s frequency is located ins
the band gap~outside the continuum spectrum!, the oscilla-
tions do not couple to the radiation, and they should the
fore persist. Harmonics of the small vibrations, generated
the nonlinearity, do give rise to multiple frequencies th
resonate with the continuum, but radiative losses through
higher harmonics are usually extremely weak@17#.

Compare eigenfrequencies~9! with the spectral gap~10b!.
The predicted frequency of the relative-position oscillatio
ksech(1,0,0) belongs to the gap, while the predicted frequ
cies of the width oscillationsksech(0,1,1) andksech(0,1,21)
do not. Of the two predicted frequencies of the width osc
lations, the frequency of the in-phase modeksech(0,1,1)
is closer to the gap, and the out-of-phase freque
ksech(0,1,21) is farther from it~we begin the analysis with
ksechrather thankGaussbecause the numerical results in Se
III demonstrate that, atu545°, the former are closer to th
vector soliton’s actual spatial frequencies than are the latt!
This suggests that the oscillation of the separation betw
the centers of the vector soliton’s two components should
the stablest eigenmode, while the out-of-phase width osc
tions, whose positions are deepest inside the radiation s
trum, should be most unstable. The numerical results p
sented in Sec. III completely corroborate these prediction

At arbitrary positive values of the cross-coupling coef
cient BÞ 2

3 , the in-phase frequency~8b!, and out-of-phase
frequency~8c! are always outside the gap~10a!, while the
position-oscillation frequency~8a! is inside the gap when
B,15/17'0.882. Note that for circular ellipticity (B52) @1#
all the three oscillation frequencies~8! are well into the ra-
diation spectrum. The position of the VA-generated eige
values relative to the gaps can also be calculated for po
izations other than 45°, but this is physically less importa
and the analysis would necessarily be lengthy and tec
cally involved, so we do not pursue it here.

III. TESTING THE MODIFIED GAUSSIAN
APPROXIMATION BY PDE SIMULATIONS

We simulated the coupled NLS equations~1! with the
cross-phase modulation coefficientB5 2

3 ~corresponding to
the linear ellipticity! for a variety of initial conditions. The
numerical scheme was the split-step Fourier-transfo
method with periodic boundary conditions. The pulse wid
were measured as the standard FWHM, normalized to m
the initial conditions: for initially Gaussian pulses, the widt
were computed as the FWHM divided by 2Aln 2, and for
initially sech-shaped pulses, the widths were computed as
FWHM divided by 2 cosh21&; the two normalizations dif-
fer by about 6%.

A. Fixed points

Starting from the usual Gaussian VA’s fixed point@Eqs.
~2!, ~3!, and~5!, or Table I#, and numerically propagating th
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pulse, we observed that slightly more than 99% of the ini
energy is ultimately retained by the soliton, with about 1%
the energy lost to emitted radiation. The exact size of
radiative losses depends slightly on the polarization angu
of the soliton. By this measure—the share of the net ene
going into the soliton—the predictions of the usual Gauss
VA are quite good, although the radiative losses ignored
this traditional version of VA are tangible.

If we compare the eventualwidthsof the vector solitons
to their initial values, the traditional Gaussian-based V
gives a not-so-good agreement with the numerical resu
The FWHM widths at the end are about one-sixth sma
than at the start. This is, as expected, due to the inhe
inaccuracy of the GaussianAnsatz~see Sec. II C!, but it is a
serious drawback nonetheless. To illustrate, Fig. 1~a! shows
the numerically simulated evolution of the pulse width
starting from the fixed point of the usual Gaussian appro
mation, with the total energyE5A2p and polarization
u530°.

FIG. 1. ~a! Evolution of the vector soliton’s widths in the PDE’
~1! starting from the fixed point predicted by the usual Gauss
approximation@Eqs. ~2!–~5!# for the caseu530°, E5A2p. ~b!
Evolution of the widths starting from the corresponding fixed po
of the hybrid Gaussian-sech approximation@Eqs. ~3!–~6!#. The
larger and smaller widths are the less energetic and more ener
components, respectively.
l
f
e
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The hybrid Gaussian-sech approximation, proposed S
II and based on Eqs.~3!–~6!, proves to give much more
accurate predictions for the stationary states than the u
Gaussian VA. The less energetic component’s width~the
larger of the two! predicted by the hybrid approximation i
slightly farther from the numerical results than the~smaller!
width of the more energetic component. There is some
pendence on the vector soliton’s polarization angle—
larger the asymmetry between the components, the large
error—but even in the worst case the prediction exceeds
eventual result by only&1% ~and in this worst case for the
less energetic component, the predicted width of the m
energetic one is found to be extremely accurate!. Comparing
this with the above-mentioned error of the traditional Gau
ian VA, that predicted widths are greater than the act
values by about one-sixth, we conclude that the empirica
modified approach improves the VA accuracy, defined
terms of the static widths, by a factor of more than 15; a
as explained above, the modified model@Eqs.~3!–~6!# iden-
tically coincides with the exact result in the integrable ca
u50°, 45°, and 90°. The radiative energy shed by the evo
ing vector soliton was too small to measure, in contrast w
the case of the usual Gaussian approximation, with q
appreciable radiative energy losses'1%, which is another
drastic improvement offered by the hybrid VA model.

For example, for the vector soliton with polarizatio
u515°, the hybrid model gives the width of the more ene
getic component, against the numerically computed value
within an error of 60.05%, and the width of the less
energetic component is 1.1% more than the numeric
computed final width. Atu530°, the hybrid model gives the
less energetic component’s width as 0.5% too high, and
more energetic component’s width as 0.1% too low. Fig
1~b! illustrates this, showing the evolution of the widths
the PDE simulations, starting from the fixed point of th
hybrid model with the total energyE5A2p and polarization
u530°. In the limiting case when nearly all the energy is
one component, the equation for the other component ca
linearized and an exact solution for it can be obtained~see,
for example, Ref.@18#!; in this case, the modified VA base
on Eqs.~3!–~6! overestimates the FWHM of the quasiline
component by just under 1.5%.

B. Oscillations

Near equilibrium, the Gaussian VA@Eqs. ~2!–~4!# pre-
dicts three small-vibrational modes, as described in S
II D. In the PDE simulations, the most persistent mode w
found to be oscillations of the separation between the
components of the soliton. The next most persistent m
were in-phase oscillations of the two widths. The out-o
phase width vibrations were found to be more than mer
less persistent than the other two modes; this mode prove
be unstable, showing a clear tendency to rearrange itself
the in-phase vibrational mode~we stress that this is not
radiative instability!: the initially out-of-phase vibrations o
the two widths eventually synchronize themselves into
in-phase vibrations, but without shedding more radiat
than comparable in-phase vibrations~very little radiation is
emitted in either case!. This numerical observation is in a
apparent contrast with the predictions of the VA mod
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which provides no mechanism to account for this effe
However—bringing in another analytical tool to compleme
the VA—consideration of the spectral gap offers an expla
tion. Although the rearrangement of the out-of-phase os
lation mode into the in-phase one is not accompanied b
conspicuous emission of radiation in the numerical simu
tions, the former mode’s instability is directly predicted b
the analysis presented in Sec. II: this mode is expected t
strongly unstable because it is located faroutside the
stability-providing band gap. The gap, actually, should
compared to the numerically computed eigenfrequencie
the three modes, rather than to the frequencies predicte
the VA; this will be done in detail below for the 45° pola
ization. As for the fact that practically no radiation is final
emitted in the course of the rearrangement of the unst
mode into the stable one, this may be explained as follo
the radiation released by the decaying unstable mode is
mediately captured by the growing stable one, helping
build up the in-phase width oscillations. In principle, th
energy exchange between the vibrational modes can be
corporated into the extended VA by adding extra degree
freedom to theAnsatz, as was done by Kath and Smyth fo
the single NLS equation@11#; however, for the coupled NLS
equations, such an investigation turns out to be extrem
involved, and is therefore not included in this work.

Comparing the VA predictions with the PDE simulatio
shows that the oscillation frequencies and eigenvectors
fairly well predicted by VA when the energy is nearly even
divided between the components. When the energy is alm
entirely concentrated in one component, the predictions
also quite accurate, but for a trivial reason—the importa
of the less-well-predicted, less-energetic component
creases as its energy decreases.

We start with polarizationu545°. For the mode in which
the predictions based on the usual Gaussian and sech
proximations disagree the most, small oscillations of
separation between the centers of the two vector soliton c
ponents@see Eqs.~9!#, the PDE results are~quite naturally!
closer to the sech model’s predictions: the simulations y
the frequency knum(1,0,0)50.53(E2/2p), compared to
ksech(1,0,0)50.50(E2/2p) and kGauss(1,0,0)50.62(E2/2p)
for the usual sech-based and Gaussian approximations.
in-phase width oscillations prove to be slower than p
dicted: knum(0,1,1)50.54(E2/2p) in the PDE simulations,
compared toksech(0,1,1)5kGauss(0,1,1)50.69(E2/2p) pro-
duced by both variational approximations~7b! and ~8b!. In
contrast to these results, the out-of-phase width oscillati
turn out to be very significantly slower than predicted by t
VA ~although the measurements in the simulations is d
cult due to the instability of the mode!: the numerically com-
puted frequency isknum(0,1,21)50.56(E2/2p), compared
to ksech(0,1,21)50.99(E2/2p) @Eq. ~7c!# or kGauss(0,1,21)
51.03(E2/2p) @Eq. ~8c!#.

Equation~10! yields, for u545°, a spectral gap of width
0.5454(E2/2p). Thus the above-mentioned numerica
computed frequencyknum(1,0,0)50.53(E2/2p) of the
position-oscillation eigenmode is indeedinside the gap,
while the in-phase width-oscillation eigenmode’s frequen
knum(0,1,1)50.54(E2/2p) is almost exactly at the gap’
edge, and the out-of-phase width-oscillation eigenmod
t.
t
-

l-
a
-

be

e
of
by

le
s:

-
o

in-
of

ly

re

st
re
e
e-

ap-
e

-

d

he
-

s

-

y

’s

frequencyknum(0,1,21)50.56(E2/2p) is definitely outside
the gap.

The in-phase vibrational mode looks, numerically, like
attractive dynamical regime. Starting from initial condition
corresponding to a mixture of the in-phase and out-of-ph
modes, we always observed the out-of-phase componen
die out much faster than the in-phase mode. The numer
simulations showed that the drop of the out-of-phase mod
amplitude isnot a result of radiative losses—very little ra
diation is emitted by the vibrating vector soliton in th
course of its evolution. A more detailed analysis of the n
merical results offers another explanation for the effe
based on consideration of the model’s Hamiltonian. The s
ton vibrations are a part of the total HamiltonianH ~the static
soliton is at a minimumH!. For the same amplitude, th
Hamiltonian of the out-of-phase vibrational mode is found
be about twice as large as the Hamiltonian of the in-ph
vibrational mode. So at a given value ofH the oscillations
transforming from out of phase to in phase should decre
in amplitude.

The VA predictions, compared to the PDE-simulation r
sults, grow worse when one component has more ene
than the other. The computed frequencies then tend to
smaller than the analytic predictions. At the polarizati
u530°, the PDE simulations give a frequency of the relativ
position oscillationsknum(1,0,0)50.49(E2/2p), compared
to kGauss(1,0,0)50.65(E2/2p) in the Gaussian-based ap
proximation ~the usual sech-based approximation does
apply to polarizations different from 45°!. The frequency of
the in-phase width oscillations was found numerically to
knum(0,1,1)50.65(E2/2p), compared to kGauss(0,1,1)
50.76(E2/2p) in the Gaussian model. The out-of-phase o
cillation mode was found to be very unstable at the polari
tions different from 45°, so that its frequency could not
computed accurately. To make another comparison: at
same polarization,u530°, but without coupling between th
components,B50, the standard variational prediction
ksech50.56(E2/2p) for the width oscillations in the more en
ergetic component.

At the polarizationu515°, the PDE simulations give th
frequency of the relative-position oscillationsknum(1,0,0)
50.46(E2/2p), compared tokGauss(1,0,0)50.69(E2/2p).
The in-phase frequency was found to beknum(0,1,1)
50.74(E2/2p), compared tokGauss(0,1,1)50.90(E2/2p).
The out-of-phase oscillation mode was again too unstable
its frequency to be computed. Without coupling (B50), the
variational prediction would beksech50.87(E2/2p) for the
width oscillations in the more energetic component.

In addition to this, the simulations reveal that, in th
course of each oscillation cycle, the less energetic com
nent peaks slightly later than the more energetic one, and
less energetic component does not oscillate by as much~rela-
tive to the more energetic component! as predicted by the
VA ~see Table II!. As predicted, atu545°, the widthsWu
andWv vary by the same amount during oscillation. Not
predicted, atu530° and atu515°, the widths of the two
components also oscillate by the same amount during
oscillations; the VA predicts the less energetic compone
width varying by more than the width of the more energe
component. The width of the less energetic component m
peak~or bottom out! after the more energetic component, t
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FIG. 2. Typical examples of evolution of the vibrational modes in direct numerical simulations of the coupled NLS equations~1! with
the cross-phase modulation coefficientB5

2
3 . Parts~a!–~c! have polarizationu545°, parts~d! and~e! haveu530°, and parts~f! and~g! have

u515°. All the simulations were performed for the energyE5A2p. The asterisk indicates the separationy between the components@parts
~a!, ~d!, and~f!#; a cross~x! is the width of theu component, and a circle(o) is the width of thev component@parts~b!, ~c!, ~e!, and~f!#.
The vertical axes show the peaks~or troughs! of the soliton parameters minus the previous troughs~or peaks!, squared; part~c! is an
exception, showing the troughs only~to better illustrate a switch from the out-of-phase to in-phase oscillations!. The horizontal axes show
the positionsz at the forward of the peaks or troughs. The initial pulses are sech shaped, with the vector soliton’s initial parameters
the fixed point predicted by the hybrid VA, except for the initial separations in the panels~a!, ~d!, and~f!, which are added as perturbation
to the predicted fixed points in order to excite the separation oscillations.
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delay generally being from 5% to 10% of the oscillatio
period. A general conclusion suggested by the simulation
the full PDEs~1! is that the two components of the vect
soliton oscillate more or less separately when the energ
distributed unevenly between them, with the more energ
one dominating and the less energetic one being pu
along. This feature can be conceived in the following wa
the more energetic component has, by itself, a higher
quency of the internal width vibrations than the less en
getic one, so it will tend to oscillate faster, running ahead
the less energetic component. The relatively small osc
tions ~compared to the VA prediction! of the less energetic
component~the less energy in the component, the greater
disparity between the VA prediction and the numerical
sults! are consistent with this component’s being mer
driven ~pulled along! by the more energetic one when th
energy is split unevenly. The more uneven the division
energy, the more the oscillating vector soliton will resem
a composite of two relatively weakly coupled, separ
single-component solitons, rather than a single unit. T
trend is compatible with the above-mentioned circumsta
that, in the limiting case when the energy of the subordin
component is much smaller than in the leading one, the
trinsic nonlinearity of the weak component may be n
glected, so that it becomes a linear mode governed by
leading component@18#.

Figure 2 illustrates the dynamics of various oscillati
modes. The vertical axes measure the changing Hamilton
of the oscillation modes. For the small oscillations near eq
librium, the Hamiltonians of the oscillation modes are pr
portional to the squares of the maximum variations fro
equilibrium. The VA models yield constants of proportio
ality, but different ones for the differentAnsätze ~sech,
Gaussian, or hybrid!; and inferring the constants of propo
tionality from the direct numerical PDE simulations giv
yet different values. Provided the perturbations are small,
peaks~or troughs! of the soliton parameters minus the pr
vious troughs~or peaks!, squared, gives the Hamiltonian u
to a multiplicative constant. The symbols used are: aster
~* ! for the separation~y!, and crosses(x) and circles~o! for
the widths of theu and v components, respectively. Th
positionsz on the horizontal axes are the locations of t

FIG. 2. ~Continued!.
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forward peaks or troughs. Figure 2~a! shows the separation
mode of au545° soliton, on a straight scale. A remarkab
feature displayed by this plot issaturation: the decay virtu-
ally ceases at a finite amplitude. Figure 2~b! is a log-log plot
of the in-phase width oscillations of au545° soliton. The
approximately straight line yields a power-law dec
;z21.07. Note that the power-law decay is very slow in com
parison with other common forms of loss, such as the ex
nential decay which would be caused by dissipative loss
Figure 2~c! shows the evolution of an initially out-of-phase
perturbed u545° soliton ~initial widths are @(6/5)A2/p
60.1)], with a log scale on the vertical axis. There is on
one data point per period—only the troughs are displa
here—unlike the other plots which show both peaks a
troughs. While initially the troughs of the two componen
are exactly out of phase, after six periods the two com
nents are more than halfway to being in-phase. Note that
oscillations of the component which is catching up are lar
than those of the advanced component.

Figure 2~d! shows the separation mode of au530° soli-
ton, starting with the equilibrium widths predicted by th
hybrid VA. This mode is less stable than in the case
u545° polarization: after some settling down of the width
the vibrational Hamiltonian decays according to a power l
;z22.4 ~note no saturation!. Figure 2~e! shows nearly in-
phase width oscillations of theu530° soliton. The waviness
of the oscillation modes’ slopes~oscillations of the widths of
componentsu and v represented by crosses and circles,
spectively! is due to the disappearing out-of-phase comp
nent. The decay is very roughly;z22., although the pres-
ence of the dying out-of-phase component obscures t
Also note that the extrema of the less energetic componev
~circles! are slightly delayed compared to those of the mo
energetic componentu ~crosses!.

Lastly, Fig. 2~f! shows a log-log plot of the separatio
mode of the u515° soliton. The corresponding width
~which are not displayed! are initially at the fixed point pro-
duced by the hybrid VA, and suffer only a very slight rea
justment in the course of the simulations. The decay i
power law, roughly;z22.7. Figure 2~g! is a log-log plot of
the nearly in-phase width oscillations of theu515° soliton.
The intersections in the plot are, as well as in Fig. 2~e!, from
the quickly disappearing out-of-phase component. The de
rate is very roughly;z21.3, although the dying out-of-phas
component obscures this. Observe that the vibrational ph
of the less energetic componentv ~circles! is delayed com-
pared to the more energetic oneu ~crosses!.

For theu545° soliton, the leveling off~saturation! of the
relative-position oscillation at a nonzero amplitude@Fig.
2~a!#, the decay of the in-phase width oscillations at a r
slightly faster thanz21 @Fig. 2~b!#, and the quick decay o
the out-of-phase oscillations@Fig. 2~c!# generally comply
with the numerical observations reported in the very rec
work @3#. However, that work addresses details of the os
lations only in certain limits, yielding less information abo
gradually decaying vibrations than about persistent ones.
instability of the out-of-phase vibrations with respect to t
in-phase vibrations@Figs. 2~c!, 2~e!, and 2~g!# is not captured
in Ref. @3#, nor is the fact that the less energetic compon
tends to be delayed in relation to the more energetic
@Figs. 2~e! and 2~g!#. At polarizationsuÞ45°, Ref.@3# pre-
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dicts permanence of the position oscillation mode, wher
our numerical simulations showed no such permanence@see
Figs. 2~d! and 2~f!, for example#.

C. Absence of true dynamical chaos

The VA approximation predicts a possibility of dynamic
chaos in the vector soliton’s internal vibrations with a su
ciently large amplitude, most noticeably in the case comb
ing the in-phase and out-of-phase width oscillations. For
ample, Fig. 3~a! shows the Poincare´ map produced by a
single dynamical trajectory generated by the ODEs~4!. This
Poincare´ map is clearly space filling, corresponding to a ch
otic motion. But in the corresponding PDE simulations, t
out-of-phase component dies out too quickly for chaos
appear. Figure 3~b! shows the chaotic trajectory from Fig

FIG. 3. ~a! The Poincare´ map generated by a typical dynamic
trajectory of the ODE approximation@Eqs. ~3!–~6!# with u530°
andE5A2p, starting from initial conditionsWu

sech51.1 andWv
sech

50.6, the initial separationy and phases being zero.~b! Evolution
of the widths of the two vector soliton’s components vs the pro
gation distancez,starting from the same initial conditions as~a!; the
solid lines are the PDE results, and the dotted lines are obta
from the ODEs~4! derived by means of the variational approxim
tion.
s

-
-

-

o

3~a! side by side with the evolution of the same dynamic
variables~the two widths! in the PDE simulations, starting
from the identical initial conditions. This illustrates a fairl
generic conclusion supported by a number of runs: in
cases where the ODEs produced by the variational appr
mation predict dynamical chaos, the PDE simulations de
onstrate that, in reality, the large-amplitude oscillationsal-
ways decay ~and for the out-of-phase mode, even sma
amplitude oscillations decay! so quickly that the vector
soliton internal vibrations do not exhibit dynamical chaos

IV. CONCLUSIONS

The variational approximation’s predictions for the d
namics of a two-component vector soliton governed by a p
of coupled NLS equations were examined in detail. Looki
at the system as a nonlinear structure protected from de
by the spectral gaps, and comparing the vector soliton’s
brational frequencies with the spectral gaps, yields additio
predictions concerning stability of the different vibration
modes. The predictions were systematically tested aga
direct numerical simulations of the PDEs. Generally, agr
ment was good, consistent with previous works, which de
onstrated that the variational approximation usually yie
very reasonable results@6–11#. Starting from the initial con-
ditions corresponding to the fixed points predicted by
GaussianAnsatz, PDE simulations showed that~for the case
of the linear ellipticity! over 99% of the initial energy goe
into the final pulse, and the rest~still an appreciable share! is
lost to radiation. However, the vector soliton’s widths d
crease by about a sixth. Because of these errors, the t
tional variational approximation based on the GaussianAn-
satz is in some respects not very~or at all! close to the
genuine stationary states, and so is sometimes a poor to
analyze the vector soliton’s small-vibrational modes or ot
subtle effects; this approximation nevertheless yields th
fundamental eigenmodes qualitatively correctly and to a
gree quantitatively correctly.

To remedy these drawbacks of the Gaussian approxi
tion, we have proposed a hybrid variational technique, us
both the Gaussian—to produce the finite-dimensional
namical system, which is the essence of the variatio
approximation—and a sechAnsatz—to readjust the vector
soliton’s shape at the end. This hybrid model gives an ex
lent approximation for the stationary states, so that the ra
tive losses are virtually absent, and the widths are predic
to no worse than within about 1% of the numerically fou
values. While the averaged Lagrangian method using s
from the start@6,7,10# is fully tractable only if the two widths
are postulated to be identically equal, and the variatio
method using the Gaussian pulses from the start is fully tr
table but less accurate, the hybrid approximation mainta
the tractability and flexibility of the Gaussian approximatio
and the accuracy of the sech approximation. Given that
variational models~except for the sophisticated modificatio
put forward in Ref.@11#! do not include the radiation modes
the fact that the steady states predicted by the hybrid
proach, on comparison with numerical simulation of t
PDE’s, suffer virtually no radiation loss is a significant a
vantage.

When the vector soliton’s energy is nearly evenly divid
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between the polarization components, two of the sm
vibrational modes predicted by the hybrid variation
approximation—vibration of the separation between the c
ters of the two components, and the in-phase oscillation
the two widths—agree well with the direct simulations. T
vibrations of the separation turn out to be most persist
and the in-phase width vibrations are also fairly long lasti
The third eigenmode, the out-of-phase vibrations of the t
widths, is, in contrast to the variational models’ prediction
unstable against conversion into the in-phase width vib
tions: initially out-of-phase vibrations tend to quickly sy
chronize themselves, becoming in-phase after a few peri

Both the stability of the first two eigenmodes and t
instability of the third eigenmode can be easily explained
comparing their frequencies to the soliton-induced gaps
the radiation spectra: The first and second frequencies
inside and at the edge of the spectral gap, making the mo
respectively, very stable and marginally stable. The third
quency is located well into the continuum~radiation!, allow-
ing energy to couple out of it, thus strongly destabilizing t
eigenmode.

In the case when the energy is divided nearly equa
between the two components, the analysis has reveal
noteworthy feature quite important for the physical applic
tions ~first of all, to the solitons in nonlinear optical fibers!:
the gradual decay of the separation mode ceases at a
level of its amplitude~saturation!, so that this mode appear
,
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to be absolutely robust, persisting indefinitely long. Unli
this, the relatively stable in-phase width oscillation mode d
cays according to a power law~which is much slower than
exponential decay!.

When the energy is unevenly divided between the co
ponents, the variational predictions for the stationary sta
grow worse for the less energetic component, but better
the more energetic one. Out of equilibrium, the compon
with less energy tends to be driven by vibrations of the do
nant component, rather than contributing to the oscillatio
in an equal manner, as the averaged Lagrangian variati
approximation has it. In the case of uneven energy distri
tion, the separation mode loses its remarkable robustn
and becomes subject to a slow power-law decay.

Finally, we considered the possibility of chaotic intern
oscillations of the vector soliton. Dynamical chaos is clea
exhibited by the sixth-order ODE system generated by
variational approximation. In the PDE simulations, howev
chaos is never observed. This can be explained by the
that the quickly decaying out-of-phase width-oscillatio
mode leads to degeneration of the large-amplitude inte
vibrations.

ACKNOWLEDGMENTS

We appreciate stimulating discussions with Y. Silberbe
and Y. Barad.
S.

,

m-

.

@1# G. P. Agrawal,Nonlinear Fiber Optics~Academic, San Diego
1995!.

@2# S. V. Manakov, Zh. Eksp. Teor. Fiz.65, 505 ~1973! @Sov.
Phys. JETP38, 248 ~1974!#.

@3# J. Yang, Stud. Appl. Math.98, 61 ~1997!.
@4# D. Anderson, Phys. Rev. A27, 3135~1983!.
@5# V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz.61, 118

~1972! @Sov. Phys. JETP34, 62 ~1972!#.
@6# T. Ueda and W. L. Kath, Phys. Rev. A42, 563 ~1990!.
@7# B. A. Malomed, Phys. Rev. A43, 410 ~1991!.
@8# D. J. Kaup, B. A. Malomed, and R. S. Tasgal, Phys. Rev. E48,

3049 ~1993!.
@9# D. Anderson, M. Lisak, and T. Reichel, J. Opt. Soc. Am. B5,

207 ~1988!.
@10# D. J. Muraki and W. L. Kath, Phys. Lett. A139, 379 ~1989!;
Physica D48, 53 ~1991!.

@11# W. L. Kath and N. F. Smyth, Phys. Rev. E51, 1484~1995!.
@12# C. Etrich, U. Peschel, F. Lederer, B. A. Malomed, and Y.

Kivshar, Phys. Rev. E54, 4321~1996!.
@13# D. Anderson, M. Lisak, B. Malomed, M. Quiroga-Teixeiro

and L. Stenflo, Phys. Rev. E55, 1677~1997!.
@14# Y. Barad and Y. Silberberg, Phys. Rev. Lett.78, 3290~1997!.
@15# C. M. de Sterke and J. E. Sipe, Prog. Opt.33, 203 ~1994!.
@16# M. Haelterman, A. P. Sheppard, and A. W. Snyder, Opt. Co

mun.103, 145 ~1993!.
@17# B. A. Malomed, Physica D27, 113 ~1987!.
@18# B. A. Malomed, J. Opt. Soc. Am. B9, 2075~1992!.
@19# B. A. Malomed, P. D. Drummond, H. He, D. Anderson, A

Berntson, and M. Lisak, Phys. Rev. E56, 4725~1997!.


